İçeriğe atla

Enstrümental kimya

Bir analitik aletin dürtü ve yanıt ölçümünü gösteren blok diyagram.

Enstrümental analiz, analitleri bilimsel aletler (enstrümanlar) kullanarak inceleyen analitik kimya alanı.

Spektroskopi

Spektroskopi elektromagnetik radyasyon ile moleküller arası etkileşimi ölçer. Spektroskopi, atomik absorpsiyon spektroskopisi, atomik emisyon spektroskopisi, morötesi-görünür spektroskopisi, x-ray florasans spektroskopisi, kızılötesi spektroskopisi, Raman spektroskopisi, nükleer magnetik rezonans spektroskopisi, fotosalınım spektroskopisi, Mössbauer spektroskopisi, Dairesel dikroizm spektroskopisi ve daha fazlası birçok farklı uygulamaya sahiptir.

Kütle spektrometri

Kütle spektrometri moleküllerin kütlelerinin ağrılıklarina oranını elektrik veya magnetik alanlar kullananarak ölçer. Kütle spektrometri kütle/elektrik yükü oranını elektrik ve magnetik alanı yardımı ile ölçer. Birkaç iyonlaştırma yöntemi mevcuttur. Bu yöntemler elektron iyonlaştırma, kimyasal iyonlaştırma, elektrosprey, hızlı atom bombardımanı, matriks- yardımlı lazer salınımı/iyonlaşması (ingilizce: matrix-assisted laser desorption/ionization, kısaca MALDI) ve diğerleridir. Aynı zamanda, kütle spektrometrisi kütle analiz edicilerinin yaklaşımları ile de katogorize edilir. Bu kütle analizörleri, magnetik-sektör, kuadrupol kütle analizörü, kuadrupol iyon tuzağı, uçus süresi (time-of-flight, kısaca TOF), Fourier transform iyon siklotron rezonans ve fazlası.

Kristalografi materyallerin kimyasal yapılarını, materyaldeki atomların yansıttığı parçacık veya elektromagnetik radyasyon kırınım çiftlerinin analizi ile, atomik seviyede ortaya koyan teknik.X-ray en yaygın kullanılanıdır. Ham veriden atomların uzaydaki yaklaşık yerleşimleri belirlenebilir.

Elektrokimyasal analiz

Elektroanalitik metotlar, analiti içeren bir elekrokimyasal hücrede, elektrik potansiyelini volt cinsinden ve/veya elektrik akımını amper cinsinden ölçerler.[1][2] Bu metotlar hücre içinde kontrol edilen ve ölçülen etkilerine göre sınıflandırılır. Üç ana katogori potentiyometri (elektrod potansiyelleri arasındaki farkı ölçülür), kulometri (hücrenin zaman içindeki akımı ölçülür) ve voltametri (hücre potansiyeli aktif olarak değişirken hücre nin akımı ölçülür).

Termal analiz

Kalorimetri ve termogravimetrik analiz ısı ilebir maddenin arasındaki etkileşimini ölçer.

Ayırma

Ayırma işlemleri materyal karışımlarının kompleksliğini azaltmak için kullanılır. Kromatografi ve elektroforez bu alanda bulunur.

Hibrit teknikler

İki veya ikiden fazla alateli kimya tekniğinin birleştirlmesi yeni hibrit teknikler geliştirilmiştir.[3][4][5][6][7]

Bu teknikler kimya ve biyokimyada oldukça sık kullanılırlar.

Bazı hibrit teknik örnekleri:

  • Gaz kromatografi-kütle spektrometri (GC-MS)
  • Sıvı kromatografisi–kütle spektrometrisi (LC-MS)
  • Sıvı kromatografi-kızılötesi spektroskopi (LC-IR)
  • Yüksek performans sıvı kromatografi/elektrosprey iyonizasyon-kütle spektrometri (HPLC/ESI-MS)
  • Kromatografi-diyod-dizi belirlemesi(LC-DAD)
  • Kapiler elektroforez-kütle spektrometri (CE-MS)
  • Kapiler elektroforez-morötesi-görünür spektroskopi (CE-UV)
  • İyon-hareketlilik spectrometri–kütle spektrometri
  • Prolat trokoyidal kütle spektrometri

Mikroskopi

Analitik kimyada, moleküllerin, biyolojik hücrelerin, biyolojik dokuların ve nanomateryallerin bireysel olarak görüntülenmesi önemli bir yere sahiptir. Üç farklı mikroskopi kategorisi vardır: optik mikroskopi, elektron mikroskopi ve tarama prob mikroskopi. Kamera ve bilgisayar endüstrilerinin hızlı gelişimden etkilenen mikroskopi ani bir ilerleme kaydetmiştir.

Lab-on-a-chip(Bir çip üzerinde Lab)

Birçok laboratuvar işlevini yalnızca bir çip üzerinde entegre eden cihazlar mevcuttur. Çip birkaç milimetre veya santimetre kare büyüklüğünde ve pikolitreden daha küçük hacimli sıvılarla iş yapabilme yeteneğine sahiptir.

Kaynakça

  1. ^ Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications. New York: John Wiley & Sons, 2nd Edition, 2000.
  2. ^ Skoog, D.A.; West, D.M.; Holler, F.J. Fundamentals of Analytical Chemistry New York: Saunders College Publishing, 5th Edition, 1988.
  3. ^ Wilkins CL (1983). "Hyphenated techniques for analysis of complex organic mixtures". Science. 222 (4621). ss. 291-6. Bibcode:1983Sci...222..291W. doi:10.1126/science.6353577. PMID 6353577. 
  4. ^ Holt RM, Newman MJ, Pullen FS, Richards DS, Swanson AG (1997). "High-performance liquid chromatography/NMR spectrometry/mass spectrometry: further advances in hyphenated technology". Journal of mass spectrometry : JMS. 32 (1). ss. 64-70. Bibcode:1997JMSp...32...64H. doi:10.1002/(SICI)1096-9888(199701)32:1<64::AID-JMS450>3.0.CO;2-7. PMID 9008869. 
  5. ^ Ellis LA, Roberts DJ (1997). "Chromatographic and hyphenated methods for elemental speciation analysis in environmental media". Journal of Chromatography A. 774 (1–2). ss. 3-19. doi:10.1016/S0021-9673(97)00325-7. PMID 9253184. 
  6. ^ Guetens G, De Boeck G, Wood M, Maes RA, Eggermont AA, Highley MS, van Oosterom AT, de Bruijn EA, Tjaden UR (2002). "Hyphenated techniques in anticancer drug monitoring. I. Capillary gas chromatography-mass spectrometry". Journal of Chromatography A. 976 (1–2). ss. 229-38. doi:10.1016/S0021-9673(02)01228-1. PMID 12462614. 
  7. ^ Guetens G, De Boeck G, Highley MS, Wood M, Maes RA, Eggermont AA, Hanauske A, de Bruijn EA, Tjaden UR (2002). "Hyphenated techniques in anticancer drug monitoring. II. Liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry". Journal of Chromatography A. 976 (1–2). ss. 239-47. doi:10.1016/S0021-9673(02)01227-X. PMID 12462615. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Biyofizik</span> Fiziksel bilimlerdeki yöntemleri kullanarak biyolojik sistemlerin incelenmesi

Biyofizik, biyolojik olayları incelemek için fizikte geleneksel olarak kullanılan yaklaşım ve yöntemleri uygulayan disiplinler arası bir bilimdir. Biyofizik, moleküler seviyeden organizma ve popülasyon seviyesine kadar tüm biyolojik organizasyon ölçeklerini kapsar. Biyofiziksel araştırmalar biyokimya, moleküler biyoloji, fizikokimya, fizyoloji, nanoteknoloji, biyomühendislik, hesaplamalı biyoloji, biyomekanik, gelişim biyolojisi ve sistem biyolojisi ile önemli ölçüde örtüşmektedir.

<span class="mw-page-title-main">Spektroskopi</span>

Spektroskopi elektromanyetik radyasyon ile maddenin etkileşiminin radyasyonun dalga boyu veya frekansının bir fonksiyonu olarak ortaya çıkan elektromanyetik spektrumu (tayf) ölçen ve yorumlayan bir çalışma alanıdır. Başka bir deyişle, elektromanyetik spektrumun tüm bantlarında görünür ışıktan kaynaklı olarak meydana gelen bir kesin renk çalışmasıdır.

<span class="mw-page-title-main">Ölçü aleti</span>

Ölçü aleti, fiziksel nicelik ölçmeye yarayan bir cihazdır. Fiziksel bilimler, kalite güvencesi ve mühendislikte kullanılan ölçme; gerçek şeylerin ve olayların, fiziksel niceliklerini elde etme ve kıyaslama etkinliğidir. Yerleşik standart nesneler ve olaylar ölçü birimleri olarak kullanılır ve ölçme işlemi; üzerinde çalışılan unsur ve bununla ilişkili ölçü birimi hakkında bir sayı verir. Ölçü aracının kullanımını tanımlayan araçlar ve formel test yöntemleri, elde edilen sayıların arasındaki ilişkilerin vasıtalarıdır.

<span class="mw-page-title-main">Kütle spektrometrisi</span> Kütle ölçer

Kütle spektrometrisi, İngilizce: Mass spectrometry (MS), kimyasal türleri iyonize edip oluşan iyonları Kütle-yük oranını esas alarak sıralayan bir analitik teknik. Daha basit terimler ile, bir kütle spektrumu bir numunen içindeki kütleleri ölçer. Kütle spektrometrisi birçok farklı alanda kullanılır ve kompleks karışımlara uygulandığı kadar saf numunelere de uygulanır.

<span class="mw-page-title-main">Ayırma işlemi</span> kimyasal madde karışımını iki veya daha fazla ürüne dönüştürmek için kullanılan yöntem

Ayırma işlemi, bir kimyasal madde karışımını en az iki veya daha fazla ürüne dönüştürmek için kullanılan yönteme verilen addır. Ayırma işlemi sonucunda oluşan ürünlerden en az biri, kaynaktaki bileşenlerden en az biri ya da birden fazlası bakımından zenginleşir. Bazı durumlarda karışımlar bir ayırma işlemiyle neredeyse tamamen saf iki bileşene ayırabilir. Karışımın bileşenleri arasındaki fiziksel veya kimyasal farklarından yararlanılarak ayırma gerçekleştirilir.

<span class="mw-page-title-main">David E. Clemmer</span> araştırmacı

David E. Clemmer, Amerikalı analitik kimyager. Bloomington'daki Indiana Üniversitesi'nde Robert ve Marjorie Mann Kimya Kürsüsü başkanı ve Seçkin Profesör'dür. Bu üniversitede Clemmer Grubu'nun başındadır. Clemmer iyon-hareketliliği kütle spektrometrisi (IM-MS) için yeni bilimsel ekipmanlar geliştirir. Geliştirdiği ekipmanlar arasında ilk iç içe iyon-hareketliliği uçuş-zamanlı kütle spektroskmetrisi de vardır. Aralarında 2006'da "çeşitli kütle spektrometre teknolojileri için iyon hareketliliği ayırmanın entegrasyonuna yaptığı öncü katkıları için" kazandığı Biemann Madalyası'nın da bulunduğu çeşitli ödüller kazanmıştır.

<span class="mw-page-title-main">Çevre kimyası</span>

Çevre kimyası, doğal yerlerde meydana gelen kimyasal ve biyokimyasal olayların bilimsel bir araştırmasıdır. Potansiyel kirliliği kaynağında azaltmaya çalışan yeşil kimya ile karıştırılmamalıdır. Hava, toprak ve su ortamlarındaki kimyasal türlerin kaynakları, reaksiyonları, taşınması, etkileri ve kaderlerinin incelenmesi; ve insan aktivitesinin ve biyolojik aktivitenin bunlara etkisi olarak tanımlanabilir. Çevre kimyası, atmosfer, su ve toprak kimyasını içeren, aynı zamanda analitik kimyaya büyük ölçüde güvenen, çevre bilimi ve diğer bilim alanlarıyla ilgili olan disiplinlerarası bir bilimdir.

<span class="mw-page-title-main">Elektrosprey iyonizasyon</span> İyon üretmek için kullanılan bir teknik

Elektrosprey iyonizasyon, bir aerosol oluşturmak için bir sıvıya yüksek voltajın uygulandığı bir elektrosprey kullanarak iyon üretmek için kütle spektrometresinde kullanılan bir tekniktir. Özellikle makromoleküllerden iyon üretiminde faydalıdır çünkü iyonize edildiğinde bu moleküllerin parçalanma eğiliminin üstesinden gelir.

<span class="mw-page-title-main">Matriks-destekli lazer desorpsiyon/iyonizasyonu</span>

Kütle spektrometrisinde, matris destekli lazer desorpsiyon/iyonizasyonu (MALDI), minimum parçalanma ile büyük moleküllerden iyonlar oluşturmak için bir lazer enerjisi emici matris kullanan bir iyonizasyon tekniğidir. Daha geleneksel iyonizasyon yöntemleriyle iyonize edildiğinde kırılgan olma ve parçalanma eğiliminde olan biyomoleküllerin ve büyük organik moleküllerin analizinde uygulanmıştır. Gaz fazında büyük moleküllerin iyonlarını elde etmenin nispeten yumuşak bir yolu olması bakımından elektrosprey iyonizasyonuna (ESI) benzer, ancak MALDI tipik olarak çok daha az sayıda çok-yüklü iyon üretir.

Sıvı kromatografi-kütle spektrometrisi, sıvı kromatografinin fiziksel ayırma yeteneklerini kütle spektrometrisinin (MS) kütle analizi yetenekleriyle birleştiren analitik bir kimya tekniğidir. Birleştirilmiş kromatografi - MS sistemleri, kimyasal analizde popülerdir çünkü her tekniğin bireysel yetenekleri sinerjik olarak geliştirilmiştir. Sıvı kromatografi, birden çok bileşenli karışımları ayırırken, kütle spektrometresi, yüksek moleküler özgüllük ve algılama hassasiyeti ile ayrı bileşenlerin yapısal kimliğini sağlar. Bu ikili teknik, çevresel ve biyolojik kaynaklı karmaşık örneklerde yaygın olarak bulunan biyokimyasal, organik ve inorganik bileşikleri analiz etmek için kullanılabilir. Bu nedenle, LC-MS, biyoteknoloji, çevre izleme, gıda işleme ve ilaç, tarım kimyası ve kozmetik endüstrileri dahil olmak üzere çok çeşitli sektörlerde uygulanabilir.

<span class="mw-page-title-main">Termosprey</span>

Termosprey, sıvı numunenin çözücü akışının çok ince ısıtılmış bir kolondan geçerek ince sıvı damlacıklardan oluşan bir sprey haline geldiği yumuşak bir iyonizasyon kaynağıdır. Kütle spektrometrisinde atmosferik basınç iyonizasyonunun bir biçimi olarak, bu damlacıklar daha sonra bir çözücü iyon plazması oluşturmak için düşük akımlı bir deşarj elektrodu aracılığıyla iyonize edilir. Oluşan bu yüklü parçacıkları süzgeçten ve hızlandırma bölgesinden geçirilir. Ardından aerosol haline getirilmiş numuneyi bir kütle spektrometresine girer. Termosprey özellikle sıvı kromatografi-kütle spektrometrisinde (LC-MS) faydalıdır.

<span class="mw-page-title-main">Atmosferik basınçta kimyasal iyonizasyon</span>

Atmosferik basınçta kimyasal iyonizasyon (Atmospheric pressure chemical ionization-APCI), atmosferik basınçta (105 Pa) gaz fazı iyon molekülü reaksiyonlarını kullanan kütle spektrometrisinde kullanılan bir iyonizasyon yöntemidir. Yaygın olarak yüksek performanslı sıvı kromatografisi (high performance liquid chromatography-HPLC) ile kombine edilir. APCI, birincil iyonların bir çözücü sprey üzerinde üretildiği kimyasal iyonizasyona benzer bir yumuşak iyonizasyon yöntemidir. APCI'nin ana kullanımı, 1500 Da'dan daha düşük moleküler ağırlığa sahip polar ve nispeten daha az polar termal olarak kararlı bileşikler içindir.

<span class="mw-page-title-main">Uçuş süresi kütle spektrometrisi</span>

Uçuş zamanı kütle spektrometrisi (TOFMS), bir iyonun kütle-yük oranının bir uçuş zamanı ölçümüyle belirlendiği bir kütle spektrometresi yöntemidir. İyonlar, gücü bilinen bir elektrik alanı tarafından hızlandırılır. İyonun hızı, kütle-yük oranına bağlıdır. İyonun bilinen bir mesafede bir detektöre ulaşması için geçen süre ölçülür. Bu süre iyonun hızına bağlı olacaktır ve bu nedenle, iyonun kütle-yük oranının bir ölçüsüdür. Bu oran ve bilinen deneysel parametrelerden iyon tanımlanabilir.

Membran girişli kütle spektrometrisi ; analitleri, yarı geçirgen bir membran yoluyla kütle spektrometresinin vakum haznesine sokma yöntemidir. Genellikle ince, gaz geçirgen, hidrofobik bir zar, örneğin polidimetilsiloksan, kullanılır. Numuneler, su, hava ve hatta bazen çözücüler dahil hemen hemen her sıvı olabilir. Numune giriş yönteminin en büyük avantajı basitliğidir. MIMS, çok az veya hiç numune hazırlığı olmadan gerçek zamanlı olarak çeşitli analitleri ölçmek için kullanılabilir. MIMS, küçük, polar olmayan moleküllerin ölçümü için en yararlı yöntemdir, çünkü bu tipteki moleküller, numuneye göre membran malzemesi için daha fazla afiniteye sahiptir.

Kütle spektrometrisinde çözünürlük, bir kütle spektrumunda birbirine yakınkütle-yük oranları olan iki tepe noktasını ayırt etme yeteneğinin bir ölçüsüdür.

Alt-üst proteomik, kütle spektrometresi ile analizden önce proteinlerin proteolitik sindirim aracılığı ile proteinleri tanımlamak, amino asit dizilerini ve translasyon sonrası modifikasyonlarını karakterize etmek için yaygın kullanılan bir yöntemdir. Proteomikte kullanılan bu yönteme alternatif olarak mevcüt başlıca iş akışına üst-alt proteomik denir; bu yöntemde yekpare haldeki proteinler sindirim ve/veya parçalanmadan önce kütle spektrometresi içinde veya 2D elektroforez ile saflaştırılır. Esasen, alt-üst proteomik, belirli bir hücre, doku vb. numunenin protein yapısını belirlemenin nispeten basit ve güvenilir bir yoludur.

<span class="mw-page-title-main">Lazer sprey iyonizasyonu</span>

Lazer sprey iyonizasyonu (LSI), yüklü bir partikül yığını oluşturmak için bir nötr partikül spreyi veya ablasyon materyali ile etkileşime giren bir lazer kullanarak iyon oluşturmak için kullanılan çeşitli yöntemlerden birini ifade eder. Bu şekilde oluşan iyonlar, kütle spektrometresi ile m/z oranına göre ayrılabilir. Lazer sprey, daha büyük moleküllerin tespiti için sıvı kromatografi-kütle spektrometresi ile birleştirilebilen birkaç iyon kaynağından biridir.

<span class="mw-page-title-main">Kapiler elektroforez kütle spektrometrisi</span> Kapiler elektroforezin sıvı ayırma işleminin kütle spektrometresi ile birleşiminden oluşan bir analitik kimya tekniğidir

Kapiler elektroforez kütle spektrometrisi (CE-MS), kapiler elektroforezin sıvı ayırma işleminin kütle spektrometresi ile birleşiminden oluşan bir analitik kimya tekniğidir. CE-MS, tek bir analizde yüksek ayırma verimliliği ve moleküler kütle bilgisi sağlamak için hem CE hem de MS'nin avantajlarını birleştirir. Yüksek çözünürlük ve hassasiyete sahiptir, minimum hacim gerektirir ve yüksek hızda analiz yapabilir. İyonlar tipik olarak elektrosprey iyonizasyonla oluşturulur ancak matris destekli lazer desorpsiyon/iyonizasyonu veya diğer iyonizasyon teknikleriyle de oluşturulabilirler. Proteomik ve biyomoleküllerin kantitatif analizinde ve klinik tıpta kullanılmaktadır. 1987'deki tanıtımından bu yana, yeni gelişmeler ve uygulamalar CE-MS'i güçlü bir ayırma ve tanımlama tekniği haline getirmiştir.

<span class="mw-page-title-main">İyon hareketlilik spektrometrisi-kütle spektrometrisi</span>

İyon hareketlilik spektrometresi-kütle spektrometrisi (IMS-MS), aynı zamanda iyon hareketlilik ayırma kütle spektrometrisi olarak da bilinir, gaz fazı iyonlarını çarpışma gazı ve kütleleri ile etkileşimlerine göre ayıran bir analitik kimya yöntemidir. İlk aşamada iyonlar, bir iyon hareketlilik spektrometresi kullanılarak bir milisaniye zaman ölçeğinde bir tampon gaz aracılığıyla hareketliliğine göre ayrılır. Ayrılan iyonlar daha sonra ikinci bir adımda bir kütle analizörüne verilir ve burada kütle/yük oranları mikrosaniye zaman ölçeğinde belirlenebilir. Bu yöntemle elde edilen analitlerin etkili bir şekilde ayrılması, proteomik ve metabolomik örnekleri gibi karmaşık örneklerin analizinde bu yöntemi geniş ölçüde uygulanabilir hale getirir.

María del Coral Barbas Arribas, metabolomik ve kimyasal verilerin entegrasyonu konusundaki araştırmalarıyla tanınan İspanya, Madrid'deki Universidad CEU San Pablo profesördür.