İçeriğe atla

Enerji bilimi

Enerji bilimi (enerji ekonomisi olarak da bilinir) temelinde enerji dönüşümlerini inceleyen bilim dalıdır. Enerji bütün ölçülerde akar çok küçük kuantum seviyesinden kainat ve biyosfere kadar çok geniş bir disiplindir. Termodinamik, kimya, biyolojik enerji, biyokimya, ekolojik enerji gibi birçok bilim dalını kapsamaktadır. Enerjinin her dalı, sabit bir tartışmayla başlar ve biter. Örneğin Lehninger (1973) termodinamiğin çeşitli enerji enerji değişimleriyle ilgilenmesinden dolayı enerji bilimi olarak tanımlanabileceğini öne sürmüştür.

Amaçları

Genel anlamda enerji bilimi, enerji değişimi sırasında kullanışlı ve daha az kullanışlı yönelimlerini ve değişimi sırasında depolanmasını inceleyen bilim dalıdır. İlkeleri, çoklu incelemeler sonucunda, tarihte hiç değişmeyen şeyler gibi bir fenomen olmuştur. Bu değişmezliği ciddi sayıda insan gözlemlediğinde ve aynı sonuca ulaştığında, bu prensipler o bilimde ‘temel kanun’ olarak adlandırılır. Bütün bilimlerde olduğu gibi, bir teoremin temel kanun olarak kabul edilmesi çok tartışmalıdır; kaç kişinin böyle bir teklife katıldığı ya da katılmadığı sorgulanmaktadır. Bu nedenle enerji biliminin en önemli amacı temel kanunlarla açıklanmıştır. Bilim filozofları termodinamiğin temel kanunlarının enerji bilimi için de geçerli olabileceğini savunmuşlardır (Reiser 1926). Enerji biliminin amacı bu açıklamaların başından sonuna kadar güvenilir enerji akışı ve mikrodan makroya kadar bütün seviyelerde depolama değişimlerini değerlendirmektir.

Tarihi

Enerji biliminin çok tartışmalı bir tarihi vardır. Bazı yazarlar enerji biliminin köklerinin antik Yunanlardan günümüze geldiğini savunurken bazıları da Leibniz'in çalışmalarının biçimlendirdiğini savunmaktadır. Richard de Villamil (1928), 1855 yılında basılan Glasgow’un Filozofik Topluluğu kitabında bulunan, Rankine'nin Ana Hatlarıyla Enerji Bilimi adlı yazısında enerji bilimini formüle ettiğini öne sürmüştür. W. Ostwald ve E. Mach sonradan çalışmaları geliştirmişler ve 1800’lü yılların sonuna doğru enerji bilimi daha iyi anlaşılmış ve Boltzmann'ın gaz teorisiyle bağdaşmadığını görmüşlerdir. Atomun ispatı tartışmaları hafiflemiştir ama haififleyene kadar da çok ciddi zararlar vermiştir. 1920 yılında Lotka, Boltzmann’ın, enerji biliminin biyolojik evrim teorisiyle sentezinden oluşan bakış açısının üstüne bir şeyler katmak ve çalışmalarına devam etmek istemiştir. Lotka evrimdeki doğal seçilimin temelinde maksimumum kullanılabilir enerji dönüşümü lehine işlediğini önesürmüştür. Bu bakış açısı daha sonraki çalışmalara, ekolojik enerji biliminin gelişmesine ilham vermiştir özellikle Howard T. Odum’un çalışmalarına.

De Villamil, enerji biliminin fizik bilimi içerisindeki kapsamını netleştirmek istemiştir bunun için bir sistem bulmuş ve mekaniği enerji ve dinamik olarak ikiye bölmüştür. Enerji bilimi, enerjiyle ilgilenmekte ve dinamik ‘soyut’, ‘saf’ ya da ‘sabit’ dinamik(moment bilimi) olmuştur. Villamil’e göre enerji bilimi matematiksel olarak skalar denklemler tarafından karakterize edilmiştir ve sabit dinamik vektörel denklem özelliği göstermektedir. Dinamiğin bu şekilde bölünmesinin boyutları uzay, zaman ve kütle ve enerji bilimi için uzunluk, zaman ve kütledir. Bu bölünme gövdelerin özellikleri, aşağıdaki iki soruya nasıl cevap verdiğine bağlı olarak değişmektedir:

  1. Parçacıklar sıkı sıkıya birbirine sabitlenmiş midir?

2. Hareket eden gövdeleri durdurmak için bir makine var mıdır?

Villamil’in sınıflandırma sistemine göre, dinamik birinci soruyu evet, ikinci soruyu hayır olarak yanıtlarken, enerji bilimi birinci soruyu hayır ikinci soruyu evet olarak yanıtlar. Dolayısıyla Villamil’in sistemine göre, dinamik parçacıkların sıkı sıkıya birbirine kenetlendiğini ve titreşim yapmadıklarını varsayar ve bu nedenle hepsi sıfır kelvinde bulunmalıdır. Momentin korunumu bu bakış açısının bir sonucudur ancak bu durum sadece mantığa uygun olduğu için doğrudur, gerçek hayatı tam olarak temsil edemez. Bu durumun aksine enerji bilimi parçacıkların sıkı sıkıya sabitlendiğini varsaymaz, parçacıklar titreşmekte özgürdür ve bunun sonucunda sıfırdan farklı sıcaklıklarda da bulunabilirler.

Enerji Biliminin Prensipleri

Ekosistemdeki karbondioksitin ekolojik analizi

Genel anlamda enerji biçim değiştirirken akar, enerji bilimi prensipleri, termodinamiğin ilk dört kanunlarını da kapsayarak kesin bir tanım arayışındadır. Ancak günümüzde termodinamiğin kanunlarının enerji biliminin altında incelenmesi tartışılmaktadır. Eğer ekoloji uzmanı Howard T. Odum haklıysa o zaman enerji biliminin prensipleri, mevcut durumda, enerji formlarının hiyerarşisine göre değerlendirilmelidir. Bu değerlendirmenin amacı evrendeki enerjiyi kalitesi ve gelişimini hesaba katmaktır. Albert Lehninger bu hiyerarşik düzen hakkında şöyle konuşmuştur,

‘… biyolojik evrendeki başarılı aşamalar enerjinin akışındadır.’

Odum üç tane daha enerji prensipleriyle ilgili öneride bulunmuştur ve sonuç olarak sadece bir tanesi enerji hiyerarşisini içeren sayılmıştır. Enerji biliminin ilk dört prensibi termodinamiğin aynı sayılı kanunlarıyla ilgilidir ve makalenin içinde geniş bilgi verilmektedir. Son dört prensip de Odum’un ekolojik enerji biliminden alınmıştır.

  • Enerji biliminin sıfırıncı prensibi

Eğer iki termodinamik sistemi A ve B termal dengedeyse ve aynı zamanda B ve C de termal dengedeyse o zaman A ve C de termal dengededir.

  • Enerji biliminin birinci prensibi

İçsel enerjideki artış, sisteme ısıtmayla eklenen enerjiden işlem sırasında sistemin çevreye yaptığı iş sırasında açığa çıkan enerjinin çıkarılmasıyla bulunur.

  • Enerji biliminin ikinci prensibi

İzolasyonlu bir termodinamik sisteminin entropisi zamanla artar ve maksimum değerine ulaşır.

  • Enerji biliminin üçüncü prensibi

Sistem mutlak sıfır sıcaklığına yaklaşıyorken, bütün süreç sona erer ve sistemin entropisi minimum değerine ya da sıfıra yaklaşarak mükemmel bir kristal madde olur.

  • Enerji biliminin dördüncü prensibi

Dördüncü prensip üzerine iki düşünce bulunmaktadır

- Onsager karşılıkları arasındaki ilişki bazen termodinamiğin dördüncü yasası olarak adlandırılır. Termodinamiğin dördüncü yasası olarak Onsger karşılıkları arasındaki ilişki, enerji biliminin dördüncü yasasını oluşturur.

- Ekolojik enerji bilimi üzerinde çalışan, H.T. Odum,maksimum enerjiyi, enerji biliminin dördüncü yasası olarak değerlendirmiştir. Ayrıca Odum maksimum iç enerjinin, evrimsel iç organizasyonun bir sonucu olduğunu ileri sürmüştür.

  • Enerji biliminin beşinci prensibi

Enerji kalite faktörü hiyerarşik olarak artar. Ekolojik besin zinciri üzerine çalışmalar üzerine, Odum enerji taşınmasının hiyerarşik birkaç seri ile ölçüldüğünü öne sürmüştür ’’ enerjinin akışı hiyerarşik olarak gelişir, akmayan enerji türleri taşınan enerjiye göre işe çevrildiğinde kalitesi daha yüksektir, bu eylemler sistemin gücünü maksimize etmekte kullanılır.’’

  • Enerji biliminin altıncı prensibi

Materyal döngüleri hiyerarşik yollarla enerji/kütle oranı ölçülerek yerine ve titreşim sıklığına göre enerji hiyerarşisinde yerini alır. M.T. Brown ve V. Buranakarn bir yazılarında şöyle dile getirmişlerdir, ‘’ genellikle enerji/kütle oranı geri dönüşüm olanağı açısından iyi bir göstergedir, enerji/kütle oranı yüksek olan materyaller daha kolay geri dönüştürülebilirler.’’

Diğer anlamı

Daha özelleştirilmiş bir anlam olarak ‘’enerji bilimi’’ ya da ‘’ materyallerin enerjisi’’ patlayıcılar, uzay gemisi yakıtları, hidrotekniklerin kısa isimleridir.

Kaynakça

  • S. W. Angrist and L. G. Helper (1973), Order and Chaos: Laws of Energy and Entropy, Penguin, Australia, p. 34
  • G. Helm (1898), Die Energetik, Leipzig.
  • M. Giampietro, K. Mayumi and A. Sorman (Dec. 2011), The Energetics of Modern Societies, Springer, Heidelberg.
  • H. R. Hertz (1899) The Principles of Mechanics Presented in a New Form, London: Macmillan; reissued by Dover, New York, 1956
  • A. Lehninger (1973), Bioenergetics W.A.Benjamin, Inc..
  • H. T. Odum and R. T. Pinkerton (1955), 'Time's Speed Regulator', American Scientist, Vol. 43, No. 2, p. 331.
  • H. T. Odum (1994), Ecological and General Systems: An Introduction to Systems Ecology, Colorado University Press.
  • H. T. Odum (2000), 'An Energy Hierarchy Law For Biogeochemical Cycles', in Brown, M. T. (ed.), Emergy Synthesis: Theory and Applications of the Emergy Methodology. Proceedings of the First Biennial Emergy Analysis Research Conference, Centre for Environmental Policy, University of Florida, Gainesville, FL.
  • J. R. Partington (1937) A Short History of Chemistry, London: Macmillan. Reissued by Dover Publications, New York, 1989 ISBN 0-486-65977-1
  • Oliver L. Reiser, 1926, Probability, Natural Law, and Emergence: I. Probability and Purpose, The Journal of Philosophy, Vol. 23, No. 16, pp. 421–435
  • M. Tribus (1961), Thermostatics and Thermodynamics, Van Nostrand, University Series in Basic Engineering, pp. 619–622.
  • De Villamil, R. (1928), Rational mechanics.

İlgili Araştırma Makaleleri

Fizik, maddeyi, maddenin uzay-zaman içinde hareketini, enerji ve kuvvetleri inceleyen doğa bilimi. Fizik, Temel Bilimler'den biridir. Temel amacı evrenin işleyişini araştırmaktır. Fizik en eski bilim dallarından biridir. 16. yüzyıldan bu yana kendi sınırlarını çizmiş modern bir bilim olmasına karşın, Bilimsel Devrim'den önce iki bin sene boyunca felsefe, kimya, matematik ve biyolojinin belirli alt dalları ile eş anlamlı olarak kullanılmıştır. Buna karşın, matematiksel fizik ve kuantum kimyası gibi alanlardan dolayı fiziğin sınırlarını net olarak belirlemek güçtür.

<span class="mw-page-title-main">Enerji</span> bir sistemin iş yapabilme yeteneğinin ölçüsü

Fizikte enerji, bir cisime veya fiziksel bir sisteme aktarılan, işin performansında ve ısı ve ışık biçiminde tanınabilen niceliksel özelliktir. Enerji korunan bir miktardır; Enerjinin korunumu yasası, enerjinin istenen biçime dönüştürülebileceğini ancak yaratılamayacağını veya yok edilemeyeceğini belirtir. Uluslararası Birimler Sisteminde (SI) enerjinin ölçü birimi joule'dür (J).

<span class="mw-page-title-main">Termodinamik</span> enerji bilimi

Termodinamik; ısı, iş, sıcaklık ve enerji arasındaki ilişki ile ilgilenen bilim dalıdır. Basit bir ifadeyle termodinamik, enerjinin bir yerden başka bir yere ve bir biçimden başka bir biçime transferi ile ilgilenir. Bu süreçteki anahtar kavram, ısının, belirli bir mekanik işe denk gelen bir enerji biçimi olmasıdır.

<span class="mw-page-title-main">Evren</span> uzay, zaman ve herşeyin bütünü

Evren, Kâinat veya Kozmos, gezegenler, yıldızlar, gökadalar ve diğer tüm madde ile enerji yapıları dahil olmak üzere uzay ve zamanın tamamı ve muhtevasıdır. Bununla birlikte gözlemlenebilir evren, temel parçacıklardan başlayarak gökadalar ve gökada kümeleri gibi büyük ölçekli yapılara kadar tüm madde ve enerjinin mevcut düzeniyle sınırlıdır.

<span class="mw-page-title-main">Termodinamik çevrim</span>

Termodinamik çevrim, bir veya daha çok hal değişimi gerçekleştiren, veya enerji üreterek veya enerjiyi transfer ederek ilk haline dönen bir çalışma akışkanı içeren çevrimlerdir. Tabloda termodinamik çevrimlerin listesi verilmiştir.

<span class="mw-page-title-main">Entropi</span> termodinamik terim

Entropi, fizikte bir sistemin mekanik işe çevrilemeyecek termal enerjisini temsil eden termodinamik terimidir. Çoğunlukla bir sistemdeki rastgelelik ve düzensizlik (kaos) olarak tanımlanır ve istatistikten teolojiye birçok alanda yararlanılır. Sembolü S'dir.

Ekserji, Termodinamik bir sistemin ihtiva ettiği potansiyel enerjisinin, herhangi bir referans haline göre kullanılabilirliğinin bir göstergesidir. Ekserji tersinir bir süreç sonucunda sistem çevre ile denge sağladığı takdirde, oluşan entropi sonucu kullanılamaz hale gelen enerji düşüldükten sonra, teorik olarak elde edilebilecek maksimum faydalı iş miktarı olarak da tanımlanabilir. Sistem enerjetiğinde ise ekserji entropiden arındırılmış enerji olarak tanımlanır.

<span class="mw-page-title-main">Kuantum mekaniği</span> atom altı seviyede çalışmalar yapan bilim dalı

Kuantum mekaniği veya kuantum fiziği, atom altı parçacıkları inceleyen bir temel fizik dalıdır. Nicem mekaniği veya dalga mekaniği adlarıyla da anılır. Kuantum mekaniği, moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır. Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik ışınımlarla olan etkileşimlerini de kapsar.

<span class="mw-page-title-main">Enerjinin korunumu</span>

Enerjinin korunumu yasası, yalıtılmış bir sistemdeki toplam enerjinin değişmeyeceğini söyler. Enerji ne yok edilebilir ne de yoktan var edilebilir, ama enerji türü değişebilir; örneğin, dinamitin patlamasıyla kimyasal enerji kinetik enerjiye dönüşebilir.

<span class="mw-page-title-main">Termodinamik kanunları</span>

Termodinamik yasaları, termodinamiğin temelini oluşturan dört yasadır. Termodinamik proseslerdeki ısı ve transferlerinin yapısını tanımlar.

<span class="mw-page-title-main">Termodinamik ve istatistiksel fizik kronolojisi</span> Termodinamik ve istatistiksel fizik ile ilgili olayların kronolojisidir.

Termodinamik ve istatistiksel fizik ile ilgili olayların kronolojisidir.

<span class="mw-page-title-main">Termodinamiğin üçüncü kanunu</span>

Termodinamik'in üçüncü yasası bazen ‘mutlak sıfır sıcaklığında dengede olan sistemlerin özelliklerine ilişkin’ olarak şu şekilde tanımlanır:

<span class="mw-page-title-main">Termodinamik tarihi</span>

Termodinamiğin tarihi fizik tarihinde, kimya tarihinde ve genel olarak bilimin tarihinde temel bir aşamadır. Bilim ve teknolojinin birçok yerinde termodinamiğin bağıntısı sebebiyle, termodinamiğin tarihi klasik mekanik, kuantum mekaniği, manyetizma ve kimyasal hız bilimin gelişimi ile ince bir biçimde dokunmuştur ve meteoroloji, bilgi teorisi ve biyoloji, fizyoloji gibi daha uzak pratik alanlara ve buhar makinesi, iç yakımlı makine, kriyojeni ve elektrik üretimi gibi teknolojik gelişmelerle de bağlantılıdır. Termodinamiğin gelişmesi atom teorisi tarafından sürdü ve sürdürüldü. Ayrıca, ustaca bir yaklaşımla, olasılık ve istatistikte yeni yönleri harekete geçirdi.

Biyolojik Termodinamik, hücrelerin, yapıların, organizmaların arasında veya içinde gerçekleşen enerji dönüşümlerini ve bu dönüşümlerin temelini oluşturan kimyasal süreçlerin işleyişini inceleyen kantitatif (sayısal) bir daldır. Biyolojik Termodinamik herhangi belirli bir fenotipik nitelikle özdeşleşen kazancın gerekli olan enerjiyle değişimine değip değmeyeceği sorusunu sorabilir.

<span class="mw-page-title-main">Termodinamik durum</span>

Termodinamikte, sistemin termodinamik durumu, durum fonksiyonları olarak bilinen uygun değişken değerleriyle tam olarak tanımlanabilir. Termodinamik değişkenlerinin değerleri bir sistem için bir kere belirlendiğinde, termodinamiğin bütün özelliklerinin değerleri eşsiz bir şekilde belirlenmiş olur. Genellikle, termodinamik durum termodinamik dengenin biri olarak varsayılır. Yani, bu durum bir sistemin sadece belli bir süredeki durumu değil, durum süresiz uzunlukta aynı ve değişmezdir.

<span class="mw-page-title-main">Negatif kütle</span>

Negatif kütle, teorik fizikte normal kütlenin zıt işaretlisi olan varsayımsal madde kavramıdır, örneğin -2 kg. Bu durum bir ya da daha fazla enerji koşulunu ihlal eder ve negatif kütle için çekimin kuvvet olması gerektiği ve pozitif yönlü ivmeye sahip olması gerektiği anlaşmazlığından kaynaklanan bazı garip özellikler gösterir. Negatif kütle, solucan deliği inşa etme gibi bazı kuramsal teorilerde kullanılır. Egzotik maddeye benzeyen en yakın bilinen örnek Casimir etkisi tarafından üretilen sözde negatif basınç yoğunluğunun alanıdır. Genel izafiyet teorisinin kütleçekimini ve pozitif, negatif enerji yüklerinin hareket yasasını iyi tanımlamasına rağmen negatif kütle dolayısıyla başka temel kuvvetleri içermez. Diğer yandan, standart model, temel parçacıkları ve diğer temel kuvvetleri iyi tanımlamasına ve kütleçekimi kütle merkezini ve eylemsizliği derinlemesine içermesine rağmen kütleçekimini içermez. Negatif kütlenin kavramının daha iyi anlaşılabilmesi için kütleçekimini açık bir şekilde ifade eden modelle birlikte diğer temel kuvvetler de gerekebilir.

<span class="mw-page-title-main">Durgun kütle</span>

Değişmez kütle, durgun kütle, gerçek kütle, tam kütle ya da sınır sistemleri durumunda basitce kütle, bir objenin veya Lorentz dönüşümlerine göre tüm referans çerçevelerinde aynı olan objelerin sisteminin toplam enerji ve momentum karakteridir. Eğer momentum çerçevesinin bir merkezi sistemde oluşuyorsa, sistemin değişmez kütlesi toplam enerjinin ışık hızının karesine bölümüyle bulunur. Diğer referans çerçevelerinde, sistemin enerjisi artar yalnız sistemin momentumu bundan çıkarılmıştır, yani değişmez kütle aynı kalır.

<span class="mw-page-title-main">Görelilik teorisi</span> zamanın göreceli olduğunu söyleyen teori

Görelilik teorisi, Albert Einstein'ın çalışmaları sonucu önerilen ve yayınlanan, özel görelilik ve genel görelilik adlarında birbirleriyle ilişkili iki teorisini kapsar. Özel görelilik, yer çekiminin yokluğunda tüm fiziksel fenomenler için geçerlidir. Genel görelilik, yer çekimi yasasını ve bu yasanın diğer doğa kuvvetleri ile ilişkisini açıklar. Astronomi de dahil olmak üzere kozmolojik ve astrofiziksel alem için geçerlidir.

<span class="mw-page-title-main">Taşınım olayı</span>

Taşınım olayı (veya taşınım fenomeni), mühendislik, fizik ve kimyada gözlemlenen ve üzerine araştırma gerçekleştirilen sistemlerin, kütle, enerji, yük, momentum ve açısal momentum değişimiyle ilgilenen çalışmalardır. Sürekli ortamlar mekaniği ve termodinamik gibi pek çok farklı alandan yararlanırken, ele aldığı konular üzerindeki ortaklıklara önemli düzeyde vurgu yapmaktadır.

<span class="mw-page-title-main">Biyolojik organizasyon</span> biyolojik bilimlerdeki karmaşık yapı ve sistemlerin hiyerarşisi

Biyolojik organizasyon, indirgemeci bir yaklaşım kullanarak yaşamı tanımlayan karmaşık biyolojik yapıların ve sistemlerin organizasyonudur. Aşağıda ayrıntıları verilen geleneksel hiyerarşi, atomlardan biyosferlere kadar uzanmaktadır. Bu şemanın daha yüksek seviyeleri genellikle ekolojik organizasyon kavramı veya hiyerarşik ekoloji alanı olarak adlandırılır.