İçeriğe atla

Encyclopedia of Triangle Centers

Encyclopedia of Triangle Centers
(Üçgen Merkezleri Ansiklopedisi)
OluşturanClark Kimberling
URLResmi site
Site türüMatematik referans/
eğitim sitesi
KayıtHayır
Kuruluş tarihi1998 (26 yıl önce) (1998)
Kullanılabilir dil(ler)İngilizce
Hizmet bölgesiKüresel
Geçerli durumAktif

Encyclopedia Of Triangle Centers, kısaca ETC, (Türkçe: Üçgen Merkezleri Ansiklopedisi), Amerika Birleşik Devletleri'nde Evansville Üniversitesi'nde matematik profesörü Clark Kimberling tarafından internette oluşturulan ve bir üçgenin geometrisi ile ilişkili binlerce noktanın veya diğer bir deyişle merkezin yer aldığı listedir. Listede, 6 Kasım 2021 itibarıyla 45,787 farklı üçgen merkezi bulunmaktadır.[1]

Listedeki her bir nokta, X (n) biçiminde bir dizin numarasıyla tanımlanır; örneğin, X (1) iç teğet çemberin merkezidir. Her bir nokta hakkında kaydedilen bilgi, onun trilineer ve barisentrik koordinatlarını ayrıca diğer tanımlanmış başka noktaları birleştiren çizgilerle olan ilişkisini içerir. Önemli noktalar için Geometricinin Eskiz Defteri diyagramlarına bağlantılar sağlanmıştır. Ansiklopedi ayrıca bir terimler ve tanımlar sözlüğü de içermektedir.

Listedeki her noktaya bir diğerinden farklı bir ad atanır. Geometrik veya tarihsel değerlendirmelerden belirli bir adın çıkmadığı durumlarda, bunun yerine bir yıldız adı kullanılır. Örneğin, listedeki 770. nokta Acamar noktası olarak adlandırılır.

Ansiklopedide listelenen ilk 10 nokta şunlardır:

ÜMA

referansı

Ad Tanım
X(1)iç merkez iç teğet çemberin merkezi
X(2)ağırlık merkeziüç kenarortayın kesişim noktası
X(3)çevrel çember merkezi çevrel çemberin merkezi
X(4)diklik merkezi üç yüksekliğin kesişim noktası
X(5)dokuz nokta merkezi dokuz nokta çemberinin merkezi
X(6)simedyan noktası üç simedyanın kesişim noktası
X(7)Gergonne noktası üçgenin iç teğet çemberinin kenarlara değme noktalarının birleştirilmesi oluşan üçgenin simedyan noktası
X(8)Nagel noktası Bir üçgende dış teğet çemberin değme noktalarını karşı köşelere birleştiren doğruların kesişme noktası
X(9)Mittenpunkt bir üçgenin dış teğet çemberlerinin merkezlerinin kesiştirilmesi ile oluşan üçgenin simedyan noktası
X(10)Spieker merkezi Spieker çemberinin merkezi

Ansiklopedide girişleri bulunan diğer noktalar:

ÜMA

referansı

Ad
X(11)Feuerbach noktası
X(13)Fermat noktası
X(15), X(16)birinci ve ikinci izodinamik nokta
X(17), X(18)birinci ve ikinci Napoleon noktası
X(19)Clawson noktası
X(20)Longchamp noktası
X(21)Schiffler noktası
X(22)Exeter noktası
X(39)Brocard noktaları
X(40)Bevan noktası
X(175)İzoperimetrik nokta
X(176)Eşit sapma noktası

Bunun gibi, daha kısa olsa da, dörtlü figürler (dörtgenler ve dört çizgili sistemler) ve çokgen geometrisi için listeler mevcuttur. (Dış bağlantılara bakabilirsiniz)

Ayrıca bakınız

Kaynakça

  1. ^ "This is PART 22: Centers X(42001) - X(44000)". Encyclopedia of Triangle Centers. 10 Aralık 2020 tarihinde kaynağından arşivlendi. 

Dış Bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Öklid geometrisi</span> Öklide atfedilen matematiksel-geometrik sistem

Öklid geometrisi, İskenderiyeli Yunan matematikçi Öklid’e atfedilen matematiksel bir sistemdir ve onun Elemanlar adlı geometri üzerine ders kitabında tarif edilmektedir. Öklid'in yöntemi, sezgisel olarak çekici küçük bir aksiyom seti varsaymaktan ve bu aksiyomlara dayanarak birçok başka önermeyi (teoremleri) çıkarmaktan ibarettir. Öklid'in sonuçlarının çoğu daha önceki matematikçiler tarafından ifade edilmiş olsa da, Öklid, bu önermelerin kapsamlı bir tümdengelimli ve mantıksal sisteme nasıl uyabileceğini gösteren ilk kişi oldu. Elemanlar, ilk aksiyomatik sistem ve resmi ispatın ilk örnekleri olarak ortaokulda (lise) hala öğretilen düzlem geometrisi ile başlar. Üç boyutlu katı geometrisi ile devam ediyor. Elemanlar’ın çoğu, geometrik dilde açıklanan, şimdi cebir ve sayı teorisi olarak adlandırılan şeyin sonuçlarını belirtir.

<span class="mw-page-title-main">Kristal yapı</span>

Kristal yapı, malzeme biliminde makroskopik olarak kristalli minerallerin yüzeyleri arasında, mikroskobik olarak ise çoğu katının atomları arasında görülen tekrarlı düzeni ifade eder. Mineraloji ve kristalografide kristaller, yüzey düzlemlerinin birbirlerine göre yerleşimi esas alınarak sınıflandırılırlar. Benzer bir örüntü, kristal yapılı katıların atomları ya da iyonları arasında da görülmekte ve yoğun madde fiziğinde yerleşik bir model olarak kullanılmaktadır.

<span class="mw-page-title-main">Ceva teoremi</span> Öklid düzlem geometrisinde bir üçgenin kenar doğru parçası çiftlerinin çarpımlarının oranının bire eşit olduğunu belirten teorem

Ceva Teoremi, herhangi bir ABC üçgeni verildiğinde, A, B ve C'den üçgenin zıt kenarlarına doğru olan doğru parçalarının üçgenin her iki kenarında oluşan doğru parçası çiftlerinin oranlarının çarpımı 1'e eşit olduğunda tek noktada kesiştiğini belirtir. Teorem adını İtalyan matematikçi Giovanni Ceva'dan alır.

<span class="mw-page-title-main">Menelaus teoremi</span> Bir üçgenin her bir kenar doğrusundan tepe noktası olmayan birer nokta olmak üzere üç noktanın, ancak ve ancak her üç kenar doğrusu üzerinde belirledikleri işaretli oranların çarpımı -1 ise eş doğrusal olduğunu belirten Öklid geometri

İskenderiyeli Menelaus'a izafe edilen Menelaus teoremi düzlemsel geometride üçgenler üzerine bir teoremdir. , ve noktalarından oluşan üçgeninde , ve doğruları üzerinde bulunan ve üçgenin köşelerinden ayrık , ve noktalarının aynı doğru üzerinde olabilmesi ancak ve ancak:

<span class="mw-page-title-main">Henri Brocard</span> Fransız meteorolog ve matematikçi (1845–1922)

Pierre René Jean Baptiste Henri Brocard, Fransız meteorolog ve özellikle geometriyle uğraşmış matematikçi. Brocard'ın kendi adını taşıyan Brocard noktaları, çemberi ile üçgenini ve bunların özelliklerini buluşu, en bilinen başarılarıdır.

<span class="mw-page-title-main">Çevrel çember</span>

Çevrel çember, geometride, bir çokgenin tüm köşelerinden geçen çember. Bu çemberin merkezi çevrel özek olarak isimlendirilir.

<span class="mw-page-title-main">Brocard noktaları</span>

Brocard noktaları, geometride bir üçgen içinde yer alan özel noktalardır. Fransız matematikçi Henri Brocard'ın çalışmalarından dolayı bu adı almıştır.

<span class="mw-page-title-main">Desargues teoremi</span>

Projektif geometride, Desargues teoremi, adını Girard Desargues'den alır, şunu belirtir:

İki üçgen, ancak ve ancak merkezi olarak perspektif içindeyse eksenel olarak perspektif içindedir.
<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

Bithynialı Theodosius, kürenin geometrisi üzerine bir kitap olan Sphaerics 'i yazan bir Yunan astronom ve matematikçi.

<span class="mw-page-title-main">Crossbar (Pasch) teoremi</span> Diğer iki ışın arasındaki bir ışın, ilk iki ışın arasındaki herhangi bir çizgi parçasını keser.

Geometride Crossbar (Pasch) teoremi, ışını ışını ile ışını arasındaysa, ışınının doğrusu parçasını keseceğini belirtir.

<span class="mw-page-title-main">Hipokrat ayı</span>

Geometride adını Sakız Adalı Hipokrat'tan sonra alan Hipokrat ayı, iki çemberden oluşan yaylarla sınırlanmış bir aydır, daha küçük olanın çapı, daha büyük çember üzerinde dik bir açıyı kapsayan bir kirişe sahiptir.

<span class="mw-page-title-main">Conway çember teoremi</span>

Düzlem geometride, Conway çember teoremi, bir üçgenin her bir köşesinde kesişen kenarlar, karşı kenarın uzunluğu kadar uzatıldığında, ortaya çıkan üç çizgi parçasının altı uç noktasının merkezinin, üçgenin iç teğet çemberinin merkezi olduğunu ifade eder. Bu altı noktanın bulunduğu çembere, üçgenin Conway çemberi denir. Teorem ve çember, İngiliz matematikçi John Horton Conway'in adını almıştır.

<span class="mw-page-title-main">Batlamyus eşitsizliği</span>

Öklid geometrisinde, Batlamyus eşitsizliği, düzlemde veya daha yüksek boyutlu bir uzayda dört nokta tarafından oluşturulan altı uzunluğu ilişkilendirir. Herhangi bir A, B, C ve D noktası için aşağıdaki eşitsizliğin geçerli olduğunu belirtir:

.

Öklid geometrisinde, Erdős–Mordell eşitsizliği herhangi bir üçgeni ve içindeki noktası için, 'den kenarlara olan uzunlukların toplamının, 'den köşelere olan uzunlukların toplamının yarısına eşit veya daha az olduğunu belirten teoremdir. Teorem, adını Macar matematikçi Paul Erdős ve Amerika doğumlu İngiliz matematikçi Louis Mordell'den almıştır. Erdős (1935) eşitsizliği kanıtlama problemini ortaya attı; iki yıl sonra tarafından bir kanıt sağlandı. Ancak bu çözüm çok basit değildi. Sonraki basit ispatlar daha sonra Kazarinoff (1957), Bankoff (1958) ve Alsina & Nelsen (2007) tarafından verilmiştir.

<span class="mw-page-title-main">Feuerbach noktası</span>

Üçgen geometrisinde, üçgenin iç çemberi ve dokuz nokta çemberi, üçgenin Feuerbach noktasında birbirine içten teğettir. Feuerbach noktası bir üçgen merkezidir, yani tanımı üçgenin yerleşimine ve ölçeğine bağlı değildir. Clark Kimberling'in Üçgen Merkezleri Ansiklopedisi'nde X(11) olarak listelenmiştir ve adını Alman geometrici Karl Wilhelm Feuerbach'tan almıştır.

<span class="mw-page-title-main">Jacobi teoremi (geometri)</span>

Düzlem geometride, bir Jacobi noktası, bir üçgeni ve , ve açılarından oluşan üçlü tarafından belirlenen Öklid düzleminde bir noktadır. Bu bilgi, , ve olmak üzere , ve şeklinde üç noktayı belirlemek için yeterlidir. Ardından, Alman matematikçi Karl Friedrich Andreas Jacobi (1795-1855) teoremine göre, , ve doğruları, Jacobi noktası denilen bir noktasında kesişir.

Bu üçgen konuları listesi, geometriciler tarafından incelenen idealleştirmelerde veya Pascal üçgeni veya üçgen matrisler gibi üçgensel dizilerde olduğu gibi soyut olarak veya fiziksel uzayda somut olarak geometrik şekille ilgili şeyleri içerir. Kelimenin geometrik şekle atıfta bulunmadığı aşk üçgeni gibi metaforları içermez.

Adını Fransız matematikçi Joseph Diez Gergonne'dan alan Gergonne noktası, bir üçgenin iç kısmındaki ayırt edici bir noktadır.

Düzlem geometrisinde, bir Hofstadter noktası her düzlem üçgen ile ilişkili özel bir noktadır. Aslında bir üçgenle ilişkili birkaç Hofstadter noktası vardır. Bunların hepsi üçgen merkezidir. Bunlardan ikisi, Hofstadter sıfır noktası ve Hofstadter bir noktası, özellikle ilginçtir. Bunlar iki aşkın üçgen merkezidir. Hofstadter sıfır noktası, X(360) olarak gösterilen merkezdir ve Hofstafter bir noktası ise Clark Kimberling'in Encyclopedia of Triangle Centers adlı eserinde X(359) olarak gösterilen merkezdir. Hofstadter sıfır noktası, 1992 yılında Douglas Hofstadter tarafından keşfedilmiştir.