İçeriğe atla

Enbüyük artçıl

Bayesci olasılıkta, enbüyük artçıl kestirimi ya da maksimum artçıl kestirimi (İngilizce: Maximum a posteriori (MAP) estimate) bilinmeyen bir niceliğin değerinin artçıl dağılımın modu olarak tahminlenmesidir. Enbüyük artçıl kestirimi, deneysel veriler kullanılarak gözlemlenemeyen bir değişkenin kestirimini sağlar. Enbüyük olabilirlik ile benzerlik gösterir ancak bir öncül dağılımdan gelen fazladan bilgiyi kullanarak tahmini geliştirir.

İlgili Araştırma Makaleleri

Regresyon analizi, iki ya da daha çok nicel değişken arasındaki ilişkiyi ölçmek için kullanılan analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa buna tek değişkenli regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon analizi olarak isimlendirilir. Regresyon analizi ile değişkenler arasındaki ilişkinin varlığı, eğer ilişki var ise bunun gücü hakkında bilgi edinilebilir. Regresyon terimi için öz Türkçe olarak bağlanım sözcüğü kullanılması teklif edilmiş ise de Türk ekonometriciler arasında bu kullanım yaygın değildir.

Korelasyon, olasılık kuramı ve istatistikte iki rassal değişken arasındaki doğrusal ilişkinin yönünü ve gücünü belirtir. Genel istatistiksel kullanımda korelasyon, bağımsızlık durumundan ne kadar uzaklaşıldığını gösterir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Betimsel istatistik</span>

Betimsel istatistik veya betimsel sayımlama istatistik bilim alanında üç temel kısmından biridir. Sayısal verilerinin derlenmesi, toplanması, özetlenmesi ve analiz edinilmesi ile ilgili istatistiktir.

<span class="mw-page-title-main">Standart sapma</span> İstatistikte bir varyasyon ölçüsü

Standart sapma, Olasılık kuramı ve istatistik bilim dallarında, bir anakütle, bir örneklem, bir olasılık dağılımı veya bir rassal değişken, veri değerlerinin yayılımının özetlenmesi için kullanılan bir ölçüdür. Matematik notasyonunda genel olarak, bir anakütle veya bir rassal değişken veya bir olasılık dağılımı için standart sapma σ ile ifade edilir; örneklem verileri için standart sapma için ise s veya s'

Açıklık, betimsel istatistikte bütün veri dizisini içinde kapsayan en küçük aralıktır. Bir veri dizisindeki ya en büyük değer ile en küçük değer arasındaki fark olarak ya da en küçük ve en büyük değerler aralığı verilerek ifade edilir. Örnek olarak; veri dizisi 5,9,1,23,12,23 ise dizisinin açıklığı ya 23-1=22 yahut da 1-23 olarak bildirilir. Bu nedenle açıklık için ölçüm birimi veri ölçüm biriminin aynısıdır.

<span class="mw-page-title-main">Poisson dağılımı</span>

Poisson dağılımı, olasılık kuramı ve istatistik bilim kollarında bir ayrık olasılık dağılımı olup belli bir sabit zaman birim aralığında meydana gelme sayısının olasılığını ifade eder. Bu zaman aralığında ortalama olay meydana gelme sayısının bilindiği ve herhangi bir olayla onu hemen takip eden olay arasındaki zaman farkının, önceki zaman farklarından bağımsız oluştuğu kabul edilir.

<span class="mw-page-title-main">Negatif binom dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında negatif binom dağılım bir ayrık olasılık dağılım tipi olup Pascal dağılımı ve Polya dağılımı bu dağılımın özel halleridir.

<span class="mw-page-title-main">Çarpıklık</span>

Çarpıklık olasılık kuramı ve istatistik bilim dallarında bir reel-değerli rassal değişkenin olasılık dağılımının simetrik olamayışının ölçülmesidir.

Olasılık kuramı ve bir dereceye kadar istatistik bilim dallarında basıklık kavramı 1905da K. Pearson tarafından ilk defa açıklanmıştır. Basıklık kavramı bir reel değerli rassal değişken için olasılık dağılımının, grafik gösteriminden tanımlanarak ortaya çıkarılan bir kavram olan, sivriliği veya basıklığı özelliğinin ölçümüdür. Basıklık kavramının ayrıntıları olasılık kuramı içinde geliştirilmiştir. Betimsel istatistik için bir veri setinin basıklık karakteri pek dikkate alınmayan bir özellik olarak görülmektedir. Buna bir neden parametrik çıkarımsal istatistik alanında basıklık hakkında hemen hemen hiçbir kestirim veya sınama bulunmamasındandır ve pratik istatistik kullanımda basıklık pek önemsiz bir karakter olarak görülmektedir. Belki de basıklık ölçüsünün elle hesaplanmasının hemen hemen imkânsızlığı buna bir neden olmuştur.

İstatistik biliminde normallik sınamaları bir seri parametrik olmayan istatistik sınamalar çeşididir. Normallik sınamalarının amacı verilmiş bir veri dizisinin normal dağılıma uygunluk iyiliğinin incelenmesidir. Bir sıra parametrik olmayan sınama geliştirilmiş bulunmasına rağmen birçok istatistikçi pratikte daha az kesin ve daha çok subjektif sağduyu ve ekpertiz gerektiren gösterim karşılaştırmalarını kullanmaktadır. Normallik sınamaları yalnız örneklem verilerinin doğrudan doğruya incelenmesinde kullanılmamakta, fakat özellikle ekonometrik analizlerde tek regresyon denklemi tahmininden sonra çıkan hataların normal olup olmadıklarının araştırılması için de çok kullanılmaktadırlar.

Mann-Whitney U testi niceliksel ölçekli gözlemleri verilen iki örneklemin aynı dağılımdan gelip gelmediğini incelemek kullanılan bir parametrik olmayan istatistik testdir. Aynı zamanda Wilcoxon sıralama toplamı testi veya Wilcoxon-Mann-Whitney testi) olarak da bilinmektedir. Bu testi ilk defa eşit hacimli iki örneklem verileri için Wilcoxon (1945) ortaya atmıştır. Sonradan, Mann and Whitney (1947) tarafından değişik büyüklükte iki örneklem problemleri analizleri için uygulanıp geliştirilmiştir.

Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:

Standart hata bir sınamada seçilebilecek tüm örneklemlerden sadece bir tanesine dayalı kestirimlerin içerdiği hata oranıdır.

Güven aralığı, istatistik biliminde bir anakütle parametresi için bir çeşit aralık kestirimi olup bir çıkarımsal istatistik çözüm aracıdır. Bir anakütle parametre değerinin tek bir sayı ile kestirimi yapılacağına, bu parametre değerini kapsayabilecek iki sayıdan oluşan bir aralık bulunur. Böylece güven aralıkları bir kestirimin ne kadar güvenilir olduğunu gösterir.

Tek anakütle ortalaması için parametrik hipotez sınaması veya tek-örneklem için sınama veya μ için sınama, bir rastgele örneklem ortalaması ile bu örneklemin çekilmiş olduğunu düşündüğümüz anakütlenin μ ile belirtilen "anakütle ortalaması" hakkında bir hipotez değeri belirtilmesinin anlamlı olup olmadığını araştırmamızı sağlayan parametrik hipotez sınamasıdır.

Bayesci olasılık olasılık kavramının farklı yorumlamalarından yalnızca biridir ve kanıta dayanan olasılık kategorisindedir. Bayesci olasılık yorumu, doğruluğu veya yanlışlığı kesin olmayan önermelerle akıl yürütmeyi sağlayan mantığın genişletilmesi gibi düşünülebilir.

Purr, Amerikalı sanatçı Katy Perry ve Gigantic Parfums tarafından oluşturulan bir koku. Kasım 2010'da piyasaya sürülmüştür. Kendisi ile benzer özellikler taşıyan artçılı Meow, Aralık 2011'de piyasaya sürülmüştür. Piyasaya sürülüşünün ilk dokuz haftasında en çok satan koku olmuştur.

<span class="mw-page-title-main">Beklenti maksimizasyonu</span>

İstatistikte, Beklenti maksimizasyon algoritması, gözlemlenemeyen gizli değişkenlere bağlı istatistiksel modellerin parametrelerinin enbüyük olabilirlik ya da enbüyük artçıl tahminlerinin bulunması için kullanılan bir yinelemeli arama yöntemidir. Beklenti maksimizasyonu, beklenti (B) adımı ve maksimizasyon (M) adımı olarak iki adımın art arda tekrarlanmasıyla gerçekleşir. B-adımı parametrelerin o anki tahminlerini kullanarak bir log-olabilirlik beklentisi fonksiyonu oluşturur. M adımı parametre değerlerini log-olabilirlik beklentisini maksimize edecek şekilde günceller. Yani bu iki adımın her biri diğerinin girdisini hesaplayarak birbirini besler. Beklenti maksimizasyon adımları tahmindeki hata miktarı belirli bir oranın altına düşene kadar yinelenir.

İstatistikte, enbüyük olabilirlik kestirimi ya da maksimum olabilirlik kestirimi bir modelin parametrelerini olabilirlik fonksiyonunu eniyileyerek kestiren, yani yapılan gözlemlerin kullanılan istatistiksel model içinde en olası olduğu parametreleri seçen bir kestirim yöntemidir. Hem anlaşılır hem de esnek olması sebebiyle yaygın bir istatistiksel kestirim yöntemi haline gelmiştir.