İçeriğe atla

Emülsiyon polimerizasyonu

Emülsiyon polimerizasyonu genellikle su, monomer ve yüzey aktif madde içeren bir emülsiyon ile başlayan bir tür radikal polimerizasyondur . En yaygın emülsiyon polimerizasyonu tipi, su içinde yağ emülsiyonu olup, bu polimerizasyon tipinde monomer damlacıkları, su fazı içinde olan yüzey aktif cisimleri ile emülsiyon haline getirilir . Bazı polivinil alkoller veya hidroksietil selüloz gibi suda çözünen polimerler, emülsiyonlaştırıcı/stabilizatör olarak kullanılabilir. "Emülsiyon polimerizasyonu" adı, tarihsel bir yanlış anlamadan kaynaklanan, hatalı bir adlandırmadır. Polimerizasyon aslında emülsiyon damlacıklarında meydana gelmez, işlemin ilk birkaç dakikasında kendiliğinden oluşan lateks/kolloid parçacıklarında gerçekleşir. Bu lateks partikülleri tipik olarak 100 nm büyüklüğünde olup birçok polimer zincirinden oluşurlar. Her partikül yüzey aktif madde ('sabun') ile çevrili olduğu için partiküllerin birbiriyle pıhtılaşması önlenir; yüzey aktif maddenin üzerindeki elektrik yükü diğer partikülleri elektrostatik olarak iter. Sabun yerine suda çözünür polimerler stabilizatör olarak kullanıldığında, parçacıklar arasındaki itme, suda çözünür polimerlerin parçacığın üzerinde diğer parçacıkları iten bir 'tüylü tabaka' oluşturması ile olur. Bunun nedeni parçacıkları bir araya getirmenin tüylü tabakadaki polimer zincirlerinin sıkıştırılmasını gerektirmesidir.

Emülsiyon polimerizasyonu ticari olarak önemli birçok polimerin yapımında kullanılır. Bu polimerlerin çoğu katı malzeme olarak kullanılır ve bu yüzden polimerizasyondan sonra polimerler sulu dispersiyondan izole edilmelidir. Diğer durumlarda, dispersiyonun kendisi nihai üründür. Emülsiyon polimerizasyonundan kaynaklanan bir dispersiyon genellikle lateks (özellikle sentetik bir kauçuktan üretilmişse) veya emülsiyon olarak adlandırılır ("emülsiyon" kelime anlamı olarak karışmayan sıvının su içinde dağılımına karşılık gelmesine rağmen). Bu emülsiyonlar, yapıştırıcılar, boyalar, kağıt kaplama ve tekstil kaplama uygulamalarında kullanım bulur ve içlerinde uçucu organik bileşiklerin bulunmaması nedeniyle bu uygulamalarda genellikle solvent bazlı ürünlere karşı tercih edilirler.

Emülsiyon polimerizasyonunun avantajları şunlardır:[1]

  • Yüksek moleküler ağırlıklı polimerler, daha yüksek hızlarda yapılabilir. Karşılaştırmak gerekirse, yığın ve çözelti serbest radikal polimerizasyonunda emulsiyon polimerizasyonunun aksine moleküler ağırlık ile polimerizasyon oranı arasında bir denge vardır.
  • Su fazı, ısıyı iyi ilettiğinden, polimerleşme sürecinde ısı dengesinin bozulmadan, polimerleşmenin yüksek hızlara ulaşmasını sağlar.
  • Polimer molekülleri parçacıklar içinde bulunduğundan, reaksiyon ortamının viskozitesi suyunkine yakın kalır ve moleküler ağırlığa bağlı değildir.
  • Nihai ürün olduğu gibi kullanılabilir ve genellikle değiştirilmesi veya işlenmesi gerekmez.

Emülsiyon polimerizasyonunun dezavantajları şunları içerir:

  • Sürfaktanlar ve stabilizatörler polimerde kalır veya çıkarılması zordur
  • Kuru polimerler için, suyun polimerden uzaklaştırılması enerji isteyen bir işlemdir
  • Emülsiyon polimerizasyonları genellikle monomerin polimere yüksek oranlı dönüşümünde çalışmak üzere tasarlanmıştır ve bu da polimere zincir aktarımı ile sonuçlanabilir.
  • Bazı istisnalar hariç, emülsüyon polimerizasyonu yoğuşma, iyonik veya Ziegler-Natta polimerizasyonu için kullanılamaz.

Tarih

Emülsiyon polimerizasyonunun erken tarihi, sentetik kauçuk alanı ile ilişkilidir.[2][3] Sulu bir emülsiyon veya süspansiyon içinde emülsiyon haline getirilmiş bir monomer kullanma fikri ilk olarak Bayer'de, I. Dünya Savaşı'ndan önce sentetik kauçuk hazırlamak amacıyla çıktı.[4][5] Bu gelişmeye esin kaynağı, doğal kauçuğun oda sıcaklığında kolloidal polimerler tarafından stabilize edilmiş dağılmış parçacıklarda üretildiği gözlemiydi, bu nedenle endüstriyel kimyacılar bu koşulları kopyalamaya çalıştı. Bayer kimyacıları, dispersiyonlarını stabilize etmek için jelatin, ovalbumin ve nişasta gibi doğal polimerleri kullandılar. Bugünün tanımına göre bunlar gerçek emülsiyon polimerizasyonları değil, süspansiyon polimerizasyonlarıdır .

Bir yüzey aktif madde ve polimerizasyon başlatıcısı kullanan ilk "gerçek" emülsiyon polimerizasyonları, 1920'lerde izopren monomerlerini polimerize etmek için gerçekleştirildi.[6][7] Sonraki yirmi yıl boyunca, II . Dünya Savaşı'nın sonuna kadar, emülsiyon polimerizasyonu ile çeşitli sentetik kauçuk formlarının üretilmesi için etkili yöntemler geliştirildi, ancak bilimsel literatürde nispeten az sayıda yayın ortaya çıktı: çoğu açıklama patentlerle sınırlı kaldı veya savaş zamanı ihtiyaçları nedeniyle gizli tutuldu .

II. Dünya Savaşı'ndan sonra emülsiyon polimerizasyonu plastik üretiminde kullanılmaya başlandı. Lateks boyalarda kullanılacak dispersiyonların ve sıvı dispersiyon olarak satılan diğer ürünlerin üretimine başlandı. Solvent bazlı malzemelerin yerini alan ürünler hazırlamak için her zamankinden daha sofistike süreçler tasarlandı. İlginç olarak, emülsüyon polimerizasyonun başlangıç sebebi olarak sayılan sentetik kauçuk üretimi, polimer mimarisinin daha iyi kontrol edilmesine izin veren yeni organometalik katalizörler geliştirildiğinden üretim süreci emülsiyon polimerizasyonundan gittikçe uzaklaştı.

Teori

Emülsiyon polimerizasyonunun farklı özelliklerini açıklayan ilk başarılı teori, 1940'larda yaptıkları polistiren çalışmalarına dayanarak Smith ve Ewart,[8] ve Harkins[9] tarafından geliştirilmiştir. Smith ve Ewart, emülsiyon polimerizasyonu mekanizmasını keyfi olarak üç aşamaya böldüler. Daha sonra, tüm monomerlerin veya sistemlerin bu üç aralığa girmediği anlaşılmıştır. Ama yine de, Smith-Ewart açıklaması emülsiyon polimerizasyonlarını analiz etmek için yararlı bir başlangıç noktasıdır.

Emülsiyon polimerizasyonunun şematik diyagramı

Serbest radikal emülsiyon polimerizasyonu mekanizmasını açıklayan Smith-Ewart-Harkins teorisi aşağıdaki adımlarla özetlenir:

  • Bir monomer, yüzey aktif madde ve su çözeltisi içinde dağıtılır veya emülsiyon haline getirilir, bu da suda nispeten büyük damlacıklar oluşturur.
  • Aşırı olan yüzey aktif madde suda miseller oluşturur.
  • Küçük miktarda monomer sudan miselin içine difüze olur .
  • Su fazına, suda çözünür bir başlatıcı ("initiator") koyulur ve başlatıcı misellerin içinde monomer ile reaksiyona girer. (Bu karakteristik, yağda çözünür bir başlatıcı maddenin monomer içinde çözündüğü ve sonra monomer parçacıklarında polimerleşmenin gerçekleştiği süspansiyon polimerizasyonundan farklıdır.) Bu Smith-Ewart teorisinde 1. aralık olarak kabul edilir.
  • Misellerin toplam yüzey alanı, daha büyük yüzey alanına sahip ancak sayıca az olan olan monomer damlacıklarının toplam yüzey alanından çok daha büyüktür; bu nedenle başlatıcı tipik olarak monomer damlacıklarında değil, miselde reaksiyona girer.
  • Miseldeki monomer hızla polimerize olur ve büyüyen zincir sona erer("termination"). Bu noktada, monomer ile şişmiş misel, bir polimer parçacığına dönüşmüştür. Sistemde hem monomer damlacıkları hem de polimer parçacıkları bulunduğunda, bu Smith-Ewart teorisinde 2. aralık olarak kabul edilir.
  • Damlacıklardan gelen daha fazla monomer büyüyen misele difuze olur. Daha fazla başlatıcı misele girdiği için reaksiyon devam eder.
  • Sonunda serbest monomer damlacıkları biter ve kalan tüm monomer parçacıklardadır. Bu Smith-Ewart 3. aralık olarak kabul edilir.
  • Belirli ürüne ve monomere bağlı olarak, parçacıklar büyüdükçe sistemdeki seviyelerini korumak için sürekli ve yavaşça ilave monomer ve başlatıcı eklenebilir.
  • Nihai ürün, polimer partiküllerinin su içinde bir dispersiyonudur . Aynı zamanda bir polimer kolloid, bir lateks veya yaygın olarak ve yanlış bir şekilde 'emülsiyon' olarak da bilinir.

Smith-Ewart teorisi, monomer metil metakrilat veya vinil asetat gibi suda çözünür olduğunda spesifik polimerizasyon davranışını tahmin etmez. Bu durumlarda homojen çekirdeklenme meydana gelir: parçacıklar, yüzey aktif madde miselleri olmadan veya ihtiyaç duyulmadan oluşur.[10]

Emülsiyon polimerizasyonunda yüksek moleküler ağırlıklı polimer zincirleri oluşur, çünkü her polimer parçacığı içindeki büyüyen zincir konsantrasyonu çok düşüktür. Geleneksel radikal polimerizasyonda, büyüyen zincirlerin konsantrasyonu daha yüksektir, bu da kuplaj ile sonlandırmaya (termination) yol açar ve daha kısa polimer zincirleri ile sonuçlanır. Orijinal Smith-Ewart-Hawkins mekanizması her parçacığın sıfır veya bir büyüyen zincir içermesini gerektiriyordu. Emülsiyon polimerizasyonunun daha iyi anlaşılması ile, parçacık başına birden fazla büyüyen zincir gelebildiği anlaşılmasına rağmen, parçacık başına büyüyen zincir sayısının hala çok düşük olduğu düşünülmektedir.

Smith-Ewart teorisinin daha ayrıntılı anlatımı

1. aralık

Sulu fazda üretilen radikaller, misel içindeki monomerle karşılaştığında, polimerizasyonu başlatırlar. Monomerin misel içinde polimere dönüştürülmesi, monomer konsantrasyonunu düşürür ve bir monomer konsantrasyonu gradyanı oluşturur. Sonuç olarak, monomer damlacıklarından ve başlatılmamış misellerden gelen monomer, büyüyen, polimer içeren parçacıklara difuze olmaya başlar. Dönüşümün önceki aşamasında radikalle karşılaşmayan miseller, monomerlerini ve yüzey aktif maddelerini büyüyen parçacıklara kaybederek kaybolmaya başlar. Teori, bu aralığın sona ermesinden sonra, büyüyen polimer partiküllerinin sayısının sabit kaldığını öngörmektedir.

2. aralık

Bu aralık aynı zamanda kararlı hal reaksiyonu aralığı olarak da bilinir. Bu aşama boyunca, monomer damlacıkları, su üzerinden difüze ederek, büyüyen polimer parçacıklarına monomer sağlayan rezervuarlar olarak işlev görür. Kararlı haldeyken, parçacık başına serbest radikallerin oranı üç duruma ayrılabilir. Parçacık başına düşen serbest radikallerin sayısı 12 den daha az olduğu zaman, bu 1 olarak adlandırılır. Parçacık başına düşen serbest radikallerin sayısı 12 ye eşit olduğu zaman, bu Durum 2 olarak adlandırılır. Parçacık başına düşen serbest radikallerin sayısı 12 den olduğu zaman, bu Durum 3 olarak adlandırılır. Smith-Ewart teorisi, aşağıdaki nedenlerden dolayı Durum 2 nin baskın senaryo olduğunu öngörmektedir. Bir radikalin içine girdiği, monomer şişmiş bir parçacık büyüyen bir zincir içerir. Büyüyen polimer zincirinin sonunda sadece bir radikal bulunduğundan, zincir sonlanamaz ve ikinci bir başlatıcı radikal parçacığa girene kadar büyümeye devam eder. Sonlandırma hızı, yayılma hızından çok daha büyük olduğundan ve polimer parçacıkları çok küçük olduğundan, ikinci başlatıcı radikalin girişinden hemen sonra zincir büyümesi sonlandırılır. Parçacık daha sonra üçüncü bir başlatıcı radikal girene kadar uykuda kalır ve ikinci bir zincirin büyümesini başlatır. Sonuç olarak, bu durumda polimer parçacıklarının ya sıfır radikali (hareketsiz hali) ya da 1 radikali (polimer büyüme hali) ya da parçacık hesabı başına serbest radikaller için göz ardı edilebilen çok kısa bir 2 radikal (sonlandırma hali) periyodu vardır. Herhangi bir zamanda, bir misel ya büyüyen bir zincir içerir ya da hiçbir büyüyen zincir içermez (eşit derecede muhtemel olduğu varsayılır). Böylece, ortalama olarak, her bir partikül için yaklaşık 1/2 radikal vardır, bu da Durum 2 senaryosuna yol açar. Bu aşamadaki polimerizasyon oranı şu şekilde ifade edilebilir: parçacıklar içinde polimerizasyon için homojen yayılma oranı sabitidir ve bir partikül içinde denge halindeki monomer konsantrasyonudur. reaksiyondaki polimerize edici radikallerin toplam konsantrasyonunu temsil eder. Misel başına ortalama serbest radikal sayısının olduğu Durum 2 için, aşağıdaki ifade ile hesaplanabilir: misel sayısı konsantrasyonu (birim hacim başına misel sayısı) ve Avogadro sabitidir (6,02×1023 mol−1 ). Sonuç olarak, polimerizasyon hızı Durum 2 için şu şekilde hesaplanır:

3. Aralık

Reaksiyon devam ettikçe ayrı monomer damlacıkları kaybolur. Bu aşamadaki polimer partikülleri, partikül başına 1'den fazla radikal içerecek kadar büyük olabilir.

Uygulamalar

Emülsiyon polimerizasyonu ile üretilen polimerler kabaca üç kategoriye ayrılabilir.

  • Sentetik kauçuk
    • Bazı stiren-bütadien (SBR) sınıfları
    • Bazı polibutadien sınıfları
    • Polikloropren (Neopren)
    • Nitril kauçuk
    • Akrilik kauçuk
    • Floroelastomer (FKM)
  • Plastikler
    • Bazı PVC sınıfları
    • Bazı polistiren sınıfları
    • Bazı PMMA sınıfları
    • Akrilonitril-bütadien-stiren terpolimeri (ABS)
    • Poliviniliden florür
    • Polivinil florür
    • PTFE
  • Dispersiyonlar (sulu dispersiyonlar halinde satılan polimerler)
    • Polivinil asetat
    • Polivinil asetat kopolimerleri
    • Poliakrilatlar
    • Stiren-bütadien
    • VAE (vinil asetat - etilen kopolimerleri)

Kaynakça

  1. ^ Odian, G, Principles of Polymerization, Wiley, New York
  2. ^ Whitby, G. S.; Katz, M. Ind.
  3. ^ Hohenstein, W. P.; Mark, H. J. Polym.
  4. ^ German patent 250690 (Sept. 12, 1909)
  5. ^ U.S. Patent 1149577, filed Jan. 6, 1913.
  6. ^ German patent 558890 (Jan. 8, 1927)
  7. ^ U. S. Patent 1732795, filed Sept.13, 1927.
  8. ^ Smith, W. V.; Ewart, R. H. J. Chem.
  9. ^ Harkins, W. D. J. Am. Chem.
  10. ^ Fitch, R. M. Polymer Colloids, Plenum, NY 1971.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Teflon</span>

Teflon, politetrafloroetilen (PTFE) polimerin ticârî adıdır. PTFE, florlanmış etilen polimerdir. Monomeri tetrafloroetilendir.

<span class="mw-page-title-main">Sabun</span> Bir temizlik maddesi

Sabun, uzun zincirli organik yağ asitlerinin Na veya K tuzlarıdır.

<span class="mw-page-title-main">Polimer</span> tekrar eden yapısal birimlere sahip makromoleküllerden oluşan madde

Polimer, bir veya daha çok monomer türünden türetilen birçok tekrarlayan alt birimden oluşan çok büyük moleküllerden veya makromoleküllerden oluşan bir madde veya malzemedir. Geniş özellik spektrumları nedeniyle, hem sentetik hem de doğal polimerler günlük yaşamda temel ve yaygın roller oynar.

<span class="mw-page-title-main">Nişasta</span>

Nişasta, farin veya amidon, suda çözünmeyen, kompleks bir karbonhidrat. Bitkiler tarafından fazla glikozu depolamak için kullanılır. Endüstride tutkal, kâğıt ve tekstil yapımında kullanılır. Gıda sanayisinde kıvamlandırıcı, yemek yapımında sıvıları koyulaştırmakta kullanılır. Çoğunlukla tahıllardan ve patatesten elde edilen tatsız ve kokusuz bir tozdur.

<span class="mw-page-title-main">Akrilik elyaf</span> Yalıtkan sentetik elyaf

Akrilik lifler, ortalama molekül ağırlığı ~100.000, yaklaşık 1900 monomer birimi olan polimer'den (poliakrilonitril) yapılan sentetik lifleridir. ABD'de bir elyafa "akrilik" denmesi için, o polimerin en az %85 akrilonitril monomer içermesi gerekir. Tipik komonomerler, vinil asetat veya metil akrilattır. DuPont, 1941'de ilk akrilik elyafları yapmış ve bunları Orlon adıyla tescillemişti.

<span class="mw-page-title-main">Polietilen tereftalat</span>

Polietilen tereftalat [bazen poli(etilen tereftalat) olarak da yazılır.] Eskiden PETP veya PET-P olarak veya genellikle en yaygın PET veya PETE olarak kısaltılan polyester ailesi reçinelerinden bir termoplastik polimer reçinedir. Genelde giysiler için elyaflarda, sıvılar ve gıdalar için kaplarda, üretim için termoformda ve mühendislik reçineleri için cam elyafla birlikte kullanılır.

<span class="mw-page-title-main">Tutkal</span>

Tutkal ağaç, mobilya, tekstil, kâğıt ambalaj, plastik, kırtasiye ve dekorasyon işlerinde kullanılan yapıştırıcı maddedir. Çeşitli gereçlerin birbirine yapıştırılmasında kullanılan maddeye tutkal, yapıştırma işlemine tutkallama denir. Merdane, sprey, rulo ile sıcak ve soğuk uygulanabilir. Yapışma, yapıştırıcı tabaka ile birleştirilecek yüzeylerin malzemeleri arasında güçlü bir adezyon bağın oluşması veya yeni moleküller arası bağların ortaya çıkmasından kaynaklanmaktadır. Yapıştırıcı eklemin mukavemeti, yapıştırıcının yüzeye kohezyonundan, otohezyondan, homojen malzemelerin teması üzerine bağlantıdan da etkilenir.

<span class="mw-page-title-main">Lateks</span> polimer mikropartiküllerin sulu bir ortamda kararlı dağılımı

Lateks, papatya ve sütleğen gibi pek çok bitkiden çıkarılan süte benzer madde. Bitkinin kesilen bir kısmından süzülür ve hava ile karşılaştığında katılaşır. Kauçuk ağacından çıkarılan lateks, doğal kauçuğun başlıca kaynağıdır.

<span class="mw-page-title-main">Termoplastik</span>

Termoplastik veya ısıyla yumuşayan plastik belirli sıcaklıkta bükülebilir veya kalıplanabilir hale gelen ve soğuduktan sonra katılaşan bir plastik polimer malzemedir.

Monomer, diğer monomer molekülleri ile birlikte reaksiyona girerek daha büyük bir polimer zinciri veya üç boyutlu bir ağ oluşturabilen bir moleküldür, bu sürece polimerizasyon adı verilir.

Polimer fiziği, sırasıyla polimerleri, onların dalgalanmalarını, mekanik özelliklerini ve ek olarak polimer ve monomerlerin bozulma ve polimerleşme gibi kinetik reaksiyonlarını inceleyen fizik dalıdır. Yoğun madde fiziği perspektifine odaklanmış olsa da polimer fiziği aslen istatistiki fiziğin bir dalıdır. Polimer fiziği ve polimer kimyası da polimerlerin uygulanabilir bölümlerini inceleyen polimer biliminde birbirleriyle alakalıdır. Polimerler büyük moleküller oldukları için deterministik metot kullanarak çözümü oldukça karmaşıktır. Fakat istatistiki yaklaşımlar sıklıkla geçerli sonuçlar verebilir çünkü büyük polimerler sonsuz sayıdaki monomerlerin termodinamik limitiyle verimli bir şekilde tarif edilebilir Termal dalgalanmalar sıvı çözeltinin içindeki polimerlerin şekline sürekli etki eder ve bu etkiyi modellemek istatistiki mekanik ve termodinamiğin yardımını gerektirir. Doğal olarak, sıcaklık faz değişimleri erime ve başka birçok şeye neden olarak çözelti içindeki polimerlerin fiziksel davranışlarına güçlü bir şekilde etki eder Polimer fiziği için istatistiksel yaklaşım bir polimerle Brown Devinimi ya da tesadüfi hareket, öz-kaçınmalı hareket tiplerinden birinin benzerliği üzerine kuruludur. En basit polimer zincir modeli tesadüfi harekete denk gelen ideal zincir şeklinde sunulmaktadır. Polimerleri karakterize etmek için deneysel yaklaşımlar ayrıca yaygındır. Büyüklük dışlanımlı kromatografi, viskometri, dinamik ışık saçılımı ve polimerleşme reaksiyonlarını otomatik sürekli çevrimiçi gözetleme metotlarını kullanan polimer karaktarizasyon metotları polimerlerin kimyasal fiziksel ve maddesel özelliklerinin tayini için kullanılabilir. Bu deneysel metotlar ayrıca polimerlerin matematiksel olarak modellenmesine yardımcı olur daha fazlasıyla polimerlerin özelliklerinin daha iyi anlaşılmasını sağlar.

<span class="mw-page-title-main">Fotokimya</span>

Fotokimya ışığın kimyasal etkileri ile ilgili bir kimya alt dalıdır. Bu terim genellikle ultraviyole, görünür ışık veya kızılötesi ışıma absorbsiyonu ile ortaya çıkan kimyasal reaksiyonları tanımlamak için kullanılmaktadır.

Koloidal silikalar ince amorf, gözeneksiz ve genellikle küresel, sıvı fazda silika parçacıklardır.

Bir çamaşır yumuşatıcı, çamaşır makinesinde durulama devresi sırasında tipik olarak çamaşırlara uygulanan bir maddedir. Çamaşır deterjanı ve çamaşır suyunun aksine, kumaş yumuşatıcıları bir çeşit arıtma yardımısı olarak kabul edilebilir.

<span class="mw-page-title-main">Ara yüzey polimerizasyonu</span>

Arayüzey polimerizasyonu basamaklı polimerizasyonun bir türüdür. Arayüzey polimerizasyonunda polimerizasyon birbirine karışmayan iki faz arasında gerçekleşir ve sonucunda bu iki faz arasında polimer oluşur. Çeşitli arayüzey polimerizasyonu tipi vardır ve farklı tipler farklı polimer topolojilerine sebep olabilir. İnce filmler, nanokapsüller, ve nanolifler bu topolojilerden birkaçıdır.

<span class="mw-page-title-main">Basamaklı polimerizasyon</span>

Basamaklı polimerizasyon, iki veya daha çok fonksiyonel gruplu monomerlerin ilk önce dimerleri, daha sonra trimerleri, daha sonra uzun oligomerleri ve sonunda uzun zincirli polimerleri oluşturmak üzere reaksiyona girdiği bir polimerizasyon mekanizmasıdır. Birçok doğal ve sentetik polimer basamaklı polimerizasyon sonucunda oluşur. Örneğin: poliesterler, poliamidler, poliüretanlar ve benzeri polimerler basamaklı polimerizasyon ile sentezlenirler. Polimerizasyon mekanizmasının doğası gereği, yüksek moleküler ağırlık elde etmek için yüksek kapsamlı ("extent") reaksiyon gereklidir. Kademeli bir polimerizasyon mekanizması, insan zinciri oluşturmak birbirlerinin ellerini tutan insanların oluşturduğu bir "insan zincirine" benzetilebilir - her insanın iki eli - reaktif yerleri - vardır. İnsanların aksine bir monomer üzerinde ikiden fazla kola -reaktif bölgeye- sahip olma olasılığı vardır: Bu durumda dallı polimerlerin üretimi gerçekleşir.

Adını Karl Ziegler ve Giulio Natta'dan alan bir Ziegler-Natta katalizi, 1-alkenlerin (alfa-olefinler) polimerlerinin sentezinde kullanılan bir katalizdür. Çözünürlükleriyle ayırt edilen iki geniş Ziegler-Natta katalizi sınıfı kullanılır:

Polimer kimyası, polimerlerin ve makromoleküllerin kimyasal sentezine, yapısına ve kimyasal ve fiziksel özelliklerine odaklanan bir kimya alt disiplinidir. Polimer kimyasında kullanılan ilkeler ve yöntemler, organik kimya, analitik kimya ve fiziksel kimya gibi çok çeşitli diğer kimya alt disiplinleri aracılığıyla da uygulanabilir. Pek çok malzeme tamamen inorganik metaller ve seramiklerden DNA ve diğer biyolojik moleküllere kadar polimerik yapılara sahiptir, ancak polimer kimyası tipik olarak sentetik, organik bileşimler bağlamında anılır. Sentetik polimerler, genellikle plastik ve kauçuk olarak adlandırılan, günlük kullanımdaki ticari malzemeler ve ürünlerde her yerde bulunur ve kompozit malzemelerin ana bileşenleridir. Polimer kimyası, her ikisi de polimer fiziği ve polimer mühendisliğini kapsayacak şekilde tanımlanabilen daha geniş polimer bilimi veya hatta nanoteknoloji alanlarına da dahil edilebilir.

Genellikle polimer malzemeleri tasarlayan, analiz eden ve değiştiren bir mühendislik alanıdır. Polimer mühendisliği, petrokimya endüstrisi, polimerizasyon, polimerlerin yapısı ve karakterizasyonu, polimerlerin özellikleri, polimerlerin birleştirilmesi ve işlenmesi ve ana polimerlerin tanımı, yapı özellik ilişkileri ve uygulamalarının yönlerini kapsar.

Polimerlerin kristalizasyonu, moleküler zincirlerinin kısmi hizalanmasıyla ilişkili bir işlemdir. Bu zincirler birlikte katlanır ve sferülit adı verilen daha büyük küresel yapılar oluşturan lamel adı verilen düzenli bölgeler oluşturmaktadır. Polimerler, erime, mekanik gerdirme veya çözücü buharlaşmasından soğutma üzerine kristalleşebilmektedir. Kristalleşme, polimerin optik, mekanik, termal ve kimyasal özelliklerini etkilemektedir. Kristallik derecesi farklı analitik yöntemlerle tahmin edilmektedir ve genellikle "yarı kristal" olarak adlandırılan kristalize polimerlerle tipik olarak %10 ile %80 arasında değişmektedir. Yarı kristalli polimerlerin özellikleri, sadece kristallik derecesi ile değil, aynı zamanda moleküler zincirlerin boyutu ve yönü ile de belirlenmektedir.