İçeriğe atla

Elitzur-Vaidman bomba testi

Bomba testi düzeneği. A - foton kaynağı, B - test edilecek bomba, C,D - foton dedektölerini göstermektedir. Aynaların sol alt ve sağ üst kısımları yarı varaklıdır, bir yüzeyi yarı yansıtma diğer yüzeyi ise geçirme özelliğine sahiptir.

Fizikte kuantum mekaniğinde Elitzur–Vaidman bomba testi problemi ilk olarak Avshalom Elitzur ve Lev Veidman tarafından 1993'te önerilen bir teorik deneydir.[1] Gerçek bir deney Anton Zeilinger, Paul Kwiat, Harald Weinfurter, and Thomas Herzog From the University of Innsbruck, Austria and Mark A. Kasevich of Stanford University in 1994.[2] tarafından yapılmış ve sonucu gösterilmiştir. ölçümün yapılıp yapılamadığının gösterilmesi için Mach-Zehnder interferometresi kullanılmıştır.

Problem

Bazıları sahte olan bir bomba koleksiyonu olduğunu düşünelim. Bu bombaların şu özellikleri olduğunu varsayalım. gerçek bombalara bir foton tetiklemesiyle çalışıyorlar ve foton bombaya girdikten sonra yutuluyor ve bomba patlıyor. Sahte bombaların foton sensörleri sorunlu ve foton bomba ile etkileşime girmeden geçip gidiyor.[3] Yani, sahte bir bomba fotonun geldiğini algılamadığı için patlamıyor. Problem şu ki, kesinlikle sahte olmayan birkaç bomba bu koleksiyonun içinden nasıl ayırt edilebilir. Bir bomba ayıklayıcı yapılıp bunlar testten geçirilirse, foton içine girdiği anda bomba patlayacağından test etmek bütün sahte olmayan bombaların patlamasına neden olacaktır.

Çözüm

Bir çözüm gerçeklik-dışı bir gözlem yöntemi kullanan, kuantum mekaniğine dayalı bir ayıklayıcı kullanmaktır.[4]

Her defasında tek bir foton gönderen bir Mach-Zehnder interferometresi ile işe başlanabilir. Bir foton yayımlandığından ve bu yarı-varaklı aynaya ulaştığında, fotonun aynadan geçme ve yansıma şansları eşittir.[5] Bir yolun üzerine fotonun çarpacağı bir bomba konulur (B). Eğer bomba sahte değilse, foton yutulur ve bomba patlar. Eğer bomba sahteyse, foton bombanın içinden etkilenmeden geçer.

Eğer fotonun durumu kuantum belirsiliğe tahvil edilirse, bir etkileşim sırasında foton aynada yansır veya içinden geçer. Bu durumda foton kuantum süperposizyon durumuna geçer ki bu durumda tüm olasılıklar birbirleriyle etkileşim halindedir. Süperpozisyon durumu bir 'gözlemci' (dedektör) ile etkileşim içine girilinceye kadar devam eder. Gözlemci dalga fonksiyonunu çökertir ve foton kuantum belirsizlik durumundan çıkar.

Adım Adım Açıklama

  • Foton yayımlandıktan sonra 'olasılık dalgası' hem birinci yarı-varaklı aynadan geçecektir (alttaki yolu takip edecektir) hem de yansıyacaktır (yukarı giden yolu takik edecektir).

Eğer bomba sahteyse:

  • Bomba fotonu yutmayacak ve dolayısıyla foton dalgası alt yolu izlemeye devam edecek (üst yola doğru gitmekte olan kendi dalgasıyla etkleşeceği) ile ikinci yarı-varaklı aynaya ulaşacaktır.
  • Bu durumda sistem içinde bomba bulunmayan basit Mach–Zehnder cihazı gibi davranacaktır, bu durumda etkileşim yatay olarak yolunda devam eder (D) dedektörüne ulaşır ancak bir patlama durumunda yukarı doğru bir engelleme gözlenir ve (C) dedektörü foton algılar.
  • Bu yüzden, (D) dedektörü foton algılayacak, (C) dedektörü ise algılamayacaktır.

Eğer bomba gerçekse

  • Foton gözlemciyi (bombayı) gördüğü anda dalga fonksiyonu çöker ve fot ya üst ya da alt yolda olmak zorunda kalır, ikisinde birden bulunamaz.
  • Foton yatay yolda tespit edilirse
  • Bomba gerçek olduğu için, foton yutulur ve bomba patlar.
  • foton dikey yolda tespit edilirse
    • Bu durumda bomba ile karşılaşmayacaktır, ikinci yar- varaklı aynada engellenmeyecektir.
    • Üst yoldak giden foton bu durumda hem aynadan geçer(i) hem de yansıtılır (ii).
    • Dedektör C v D'de gözlemcilerle karşılaşan fotonun dalga fonksiyonu yine çöker ve C ya da D dedektöründen sadece birinde tespit edilir,

Sonuç olarak C dedektöründe foton algılanırsa, B dedektörünün fonksiyoneldir (bombanın gerçektir).

Bu işlemle, çalışan bombaların %25'i patlatılmadan ayıklanabilir, geri kalan %50'si patlayacak, %25'i de belirsiz olarak kalacaktır. Geri kalan 'belirsiz' bombalara da bu süreç uygulanılmaya devam edilirse başlangıçtaki sağlam bombaların %33'ü patlatılmadan ayıklanabilir. Deneyler kısmında deney değiştirilerek gerçek bombaların %100'e yakınının tespit edileceği açıklanmıştır.

Çoklu Dünyalar Yaklaşımı

Bu fenomeni açıklamanın bir yöntemi Everett'in önerdiği çoklu dünyalar yorumudur. Bu yorumda kuantum fiziğine göre birkaç farklı sonuç doğurabilecek tüm olayların oluşabilecek tüm sonuçları birden gerçekleşir, karar verme anında evren bölünüp her bir bölüm farklı bir yoldan ilerleyerek hepsini oluşturur. Bu paralel evrenler bölünmeye neden olan (kuantum pozisyonunda olarak bölünmeye sebep olan) parçacık hariç birbirinden tamamen bağımsızdır ve her birinde (bölünmeye neden olan parçacık hariç) her şeyin birer kopyası bulunmaktadır.

Çoklu dünyalar yorumuna göre, Elitzur–Vaidman bomba deneyinde fotonların süperpozisyon durumu aynı fotonun farklı paralel evrenlerdeki kopyalarının birbiriyle etkileşimi fotonun farklı durumları olarak yorumlanır. Bundan dolayı, bir foton yarı geçirgen aynayla karşılaştığında, iki evren oluşur. Bir tanesinde foton aynadan geçer ve diğer evrende aynadan yansır. Bu iki evren aynada evrenleri birbirinden ayıran foton dışında tamamen birbirinden bağımsızdır. Bir evrende aynadan geçen foton hala diğer evrende aynadan yansıyan kendi kopyasıyla etkileşime girerek, deneydeki sonucun doğmasına neden olmaktadır.

Deneyler

1994 yılında, Anton Zeilinger, Paul Kwiat, Harald Weinfurter ve Thomas Herzog eşlenik bir deney gerçekleştirerek, etkileşimsiz ölçümlerin gerçekte mümkün olduklarını göstermişlerdir.[2]

1996 yılında, Kwait et al. seri polarizasyon cihazları kullanarak ışık çıktısı verimliliğini arttırarak foton değerini bire çok yakın bir değere yaklaştıracak yeni bir metot geliştirdi. Temel fikir foton yığınını çok sayıda çükük yığına bölmek ve bunların hepsini aynadan yansıttıktan sonra bunları tekrar birleştirmek üzerine kuruludur.[6]

Bu deney felsefi açıdan şu "gekçeklikötesi" soruya cevap aradığı için önemlidir: "Bobma sensörünün içine bir foton girerse ne olur?" Cevap "bomba gerçektir, foton tespit edildiğinden bomba patlar" ya da "bomba sahtedir, foton bomba tarafından soruğurlmaadn geçip gider." Bilinen gerçeklikte gerçek bombaların hepsi patlamış olurlar. Ancak bu deneyle kuantum boyutta bu soruya tüm çalışan bombaları patlatmadan cevap verebiliyoruz. Bu deney deneysel bir düzenek yardımıyla bunun gibi sorulara "gerçeklikötesi" cevaplar verilebileceğini göstermektedir.

Kaynakça

Şablon:Kaynak style

  1. ^ Elitzur & Vaidman 1993
  2. ^ a b Experimental realization of "interaction-free" measurements 3 Mayıs 2019 tarihinde Wayback Machine sitesinde arşivlendi., Paul Kwiat 1994
  3. ^ Can Schrodinger's Cat Collapse the Wavefunction? 16 Ekim 2007 tarihinde Wayback Machine sitesinde arşivlendi., Keith Bowden 1997
  4. ^ Keith Bowden (k.bowden@physics.bbk.ac.uk)
  5. ^ David Harrison
  6. ^ Tao of Interaction-Free Measurements 13 Aralık 2015 tarihinde Wayback Machine sitesinde arşivlendi., Paul Kwiat

Konuyla ilgili yayınlar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kuark</span> Temel parçacık türü

Kuark, bir tür temel parçacık ve maddenin temel bileşenlerinden biridir. Kuarklar, bir araya gelerek hadronlar olarak bilinen bileşik parçacıkları oluşturur. Bunların en kararlıları, atom çekirdeğinin bileşenleri proton ve nötrondur. Renk hapsi olarak bilinen olgudan ötürü kuarklar asla yalnız bir şekilde bulunmaz, yalnızca baryonlar ve mezonlar gibi hadronlar dahilinde bulunabilir. Bu sebeple kuarklar hakkında bilinenlerin çoğu hadronların gözlenmesi sonucunda elde edilmiştir.

<span class="mw-page-title-main">Mezon</span>

Mezonlar, güçlü etkileşim ile bağlı bir kuark ve bir antikuarktan oluşan hadronik atomaltı parçacıklardır. Atomaltı parçacıklardan oluştuklarından mezonlar, kabaca bir femtometre kadarlık bir yarıçaplı fiziksel bir boyuta sahiptirler. Bütün mezonlar kararsızdırlar ve en uzun ömürlüsü mikrosaniyenin altında bir ömre sahiptir. Yüklü mezonların bozunmasıyla elektron ve nötrino oluşur. Yüksüz mezonların bozunmasıyla da fotonlar oluşur.

Kuantum kriptografisi, kriptografik görevleri gerçekleştirmek için kuantum mekaniği özelliklerinden yararlanma bilimidir. Kuantum kriptografinin en iyi bilinen örneği anahtar değişimi sorununa bilgi teorik açıdan güvenli olan bir çözüm sunan "kuantum anahtar dağıtımı"dır. Kuantum kriptografinin avantajı, yalnızca klasik iletişim kullanılarak imkansız olduğu kanıtlanan veya varsayılan çeşitli kriptografik görevlerin tamamlanmasına izin vermesidir. Örneğin, bir kuantum durumu içinde kodlanmış kopyalanması imkansız veridir. Eğer biri kodlanmış veriyi okumaya çalışırsa, kuantum durumu dalga fonksiyonu çökmesi nedeniyle değişecektir. Bu, kuantum anahtar dağıtımında (QKD) gizli dinlemeyi tespit etmek için kullanılabilir.

Parçacık fiziğinde bir hadron, güçlü etkileşim tarafından bir arada tutulan taneciklerden oluşan bir bileşik parçacıktır.

Yukarı kuark en hafif kuarktır, temel bir parçacıktır ve maddenin önemli bir bileşenidir. Aşağı kuarkla birlikte atom çekirdeğini meydana getiren proton ve nötronu oluşturur. Birinci nesil olarak sınıflandırılırlar. Elektrik yükü +2/3 e olup çıplak kütleleri 2,2+0,5
-0,4
 MeV/c2
olarak ölçülmüştür. Bütün kuarklar gibi yukarı kuark da 1/2 spine sahip temel fermiyondur ve dört temel etkileşimin hepsinden etkilenir. Yukarı kuarkın antiparçacığı olan yukarı antikuark ile elektriksel yük işareti gibi birkaç özellikte farklılaşır.

<span class="mw-page-title-main">Nötrino</span> atom altı ya da temel parçacıklardan biri

Nötrino, ışık hızına yakın hıza sahip olan, elektriksel yükü sıfır olan ve maddelerin içinden neredeyse hiç etkileşmeden geçebilen temel parçacıklardandır. Bu özellikleri nötrinoların algılanmasını oldukça zorlaştırmaktadır. Nötrinoların çok küçük, ancak sıfır olmayan durgun kütleleri vardır. Yunan alfabesindeki ν (nü) ile gösterilir.

W ve Z bozonları, zayıf etkileşime aracılık eden temel parçacıklardır. Bu bozonların keşfi parçacık fiziğinin Standart Modeli için büyük bir başarının müjdecisi oldu.

<span class="mw-page-title-main">Zayıf etkileşimli büyük kütleli parçacık</span>

Zayıf etkileşimli büyük kütleli parçacık, egzotik parçacıklardan oluşan karanlık madde adayıdır.

<span class="mw-page-title-main">Kuantum renk dinamiği</span>

Kuantum renk dinamiği veya kuantum kromodinamiği, teorik fizikte kuantum kromodinamiği, kuarklar ve gluonlar arasındaki güçlü etkileşimin proton, nötron ve pion gibi kompozit hadronları oluşturan, temel parçacıkların teorisidir.

<span class="mw-page-title-main">Çift yarık deneyi</span>

Young deneyi olarak da bilinen çift-yarık deneyi, ışığın dalga özelliği sergilediğini gösterir. Fotoelektrik etkisi ışığın dalga özelliğinin yanı sıra parçacık özelliği de sergilediğini gösterir. Deneyin basit versiyonunda lazer ışını gibi bağdaşık bir ışık kaynağı, iki paralel yarık açılmış ince bir levhayı aydınlatır ve yarıktan geçen ışık levhanın arkasındaki bir ekranda gözlemlenir. Işığın dalga doğası ışık dalgalarının iki yarıktan da geçerek girişim yapmasını ve ekranda aydınlık ile karanlık bantlar oluşturmasını sağlar ki bu sonuç ışık tamamen parçacıklı yapıda olsa beklenemez. Fakat, parçacıklardan veya fotonlardan oluşuyormuş gibi, ekranda her zaman ışığın soğurulduğu görülür. Bu durum dalga-parçacık ikiliği olarak bilinen prensibi ortaya koyar.

Erkileşimsiz ölçümler fizikte ölçüm cihazı ile ölçülen cisim arasında herhangi bir etkileşim olmaksızın pozisyon ya da durumunu belirlemek için yapılan kuantum ölçümleridir. Örnekleri Renninger negative-sonuç deneyi, Elitzur–Vaidman bomba testi ve Çift Yarık deneyi.

Dolanıklık, kuantum mekaniğine özgü bir olgudur. Kuantum fiziğine göre iki benzer parçacık birbiriyle eşzamanlılığa sahiptir. Bu parçacıklar ayrı yerlerde birbirinden eşzamanlı olarak etkilenirler. İki elektron parçası ışık yılına yakın uzaklıkta olsa dahi birbirlerini etkileyebilirler. Bu sayede birbirinden ışık yılına yakın bir uzaklıkta olan bir elektron kendi çevresi etrafında sağa dönerken diğer bir elektron parçası sola dönecektir.

<span class="mw-page-title-main">Lazer soğutma</span>

Lazer soğutma; atomik ve moleküler örneklerin bir veya daha fazla lazer alan ile etkileşimi ile mutlak sıfıra yakın derecede soğutulduğu birçok tekniği ifade etmektedir.

<span class="mw-page-title-main">Bohr-Einstein tartışmaları</span> Bohr-Einsitein arası diyaloglar

Bohr–Einstein tartışmaları, kuantum mekaniği hakkında Albert Einstein ile Niels Bohr arasında süregelen tartışmadır.

Wheeler'ın gecikmiş seçim deneyi aslında John Archibal Wheeler tarafından önerilen kuantum fiziğinin içinde önde gelen 1978 ve 1984 yılları arasında oluşturulmuş düşünce üzerine dayalı bir deneydir. Bu tür deneyler ışığın çift yarık deneyinde deneysel bir aparat olarak yolculuk yapacağı ve kendini düzenleyeceği, kendisi için en doğru karardan yola çıkarak mı yoksa ışığın belli olmayan bir halde olacağını mı yahut dalga mı parçacık mı olduğunu anlama girişimlerinde bulunmak için düzenlenmiştir.

Nötralino, süpersimetride varsayımsal bir parçacıktır. Fermiyon ve elektrik olarak nötr olan 4 nötralino vardır. En hafifleri tipik olarak dengelidir. Tipik olarak N͂1^0 ; N͂2^0, N͂3^0 ve N͂0^4 olarak adlandırılırlar. Bu 4 durum bino ve wino'nun karışımıdır. Genelde renkli süpersimetrik parçacıklardan oluşurlar.

Fizikte, ayna maddesi, gölge maddesi ya da Alice maddesi olarak da adlandırılır, sıradan maddeye varsayımsal bir karşılıktır. Modern fizik mekansal simetriyi üç temel tipte inceler: yansıma, dönme ve öteleme. Bilinen element parçacıkları dönme ve öteleme ile ilgilidir, ayna yansıma simetrisi ile değil . Dört temel etkileşimden –elektro manyetizm, güçlü etkileşim, zayıf etkileşim ve yerçekimi- sadece zayıf etkileşim eşitliği bozabilir (parity). Zayıf etkileşimler içinde parite ihlali ilk kez 1956 yılında τ-θ bulmaca için bir çözüm olarak Tsung Dao Lee ve Chen Ning Yang tarafından kabul edildi. Zayıf etkileşimine eşitlik(parity) durumunda değişip değişmediğini test etmeye yönelik bir dizi deney önerdiler. Bilinen parçacıkların zayıf etkileşim eşitliğini ihlal ettiği bu deneyler yarım yıl sonra yapıldı ve onaylandı.Fakat parçacık içeriği büyütülür ise parite simetri doğanın temel bir simetrisi olarak restore edilebilir, bu nedenle her parçacığın bir ayna ortağı vardır. Temel fikirler daha geriye dayansa da bu teorinin modern formu 1991 de açıklanmıştır. Ayna parçacıkları kendi aralarında sıradan parçacıklarla aynı şekilde etkileşime geçerler. Ama sırdan parçacıklar solak etkileşim gösterirken aya parçacıkları sağlak gösterir. Bu nedenle, her sıradan parçacık için bir ayna parçacığının olması şartıyla, ayna yansıma simetrisi doğanın tam bir simetrisi olarak kabul edilebilir. Eşitlik te kendiliğinden Higgs potansiyeline bağlı olarak bozulabilir. Bozulmamış eşit simetri durumda parçacık kütleleri ayna partnerleriyle aynı olur, bozulmuş eşit simetri durumda ise ayna partnerleri daha hafif ya da ağır olur. Ayna maddesi,eğer varsa, sıradan madde ile zayıf etkileşime girmesi gerekir. Çünkü ayna parçacıkları arasındaki etkileşim ayna bozonları aracılığıyla oluşur. Graviton istinasıyla,bilinen bozonlardan hiçbiri, onların ayna partneriyle özdeş olamaz. Ayna maddesi ve sıradan maddeler birbirini sadece kuvvetler vasıtasıyla etkilerken; yerçekimi, ayna bozonları ve sıradan bozonların karrışımlarının kinetic kuvvetidir ya da Holdom parçacıklarının değşim kuvvetidir. Bu karşılıklı etkileşimler sadece çok zayıf olabilir. Ayna parçacıkları, bu yüzden evrendeki karanlık maddenin sonuçları olduğu varsayılır.

İki foton fiziği, genellikle gama-gama fiziği olarak bilinir, parçacık fiziğinin bir dalıdır ve iki foton arasındaki etkileşimi açıklar.

Kuantum mekaniğinde, bir kuantum silgisi deneyi, kuantum dolanıklık ve tamamlayıcılık dahil olmak üzere kuantum mekaniğinin çeşitli temel yönlerini gösteren bir interferometre deneyidir. Kuantum silgisi deneyi, Thomas Young'ın klasik çift yarık deneyinin bir çeşididir. Bir fotonun 2 yarıktan hangisinden geçtiğini belirlemek için harekete geçildiğinde fotonun kendisi ile girişim oluşturamayacağını tespit ediyor. Bir foton akışı bu şekilde işaretlendiğinde, Young deneyinin karakteristik özelliği olan girişim saçakları görülmeyecektir. Deney aynı zamanda hangi yarıktan geçtiğini ortaya çıkarmak için "işaretlenen" bir fotonun daha sonra "işaretinin kaldırılabileceği" durumlar da yaratıyor. "İşaretlenmemiş" bir foton kendisi ile girişim oluşturacak ve bir kez daha Young'ın deneyindeki karakteristik saçakları üretecektir.

İlk olarak Yoon-Ho Kim, R. Yu, S.P. Kulik, Y. H. Shih ve Marlan O. Scully tarafından gerçekleştirilen ve 1998'in başlarında rapor edilen gecikmiş seçim kuantum silgisi deneyi John Archibald Wheeler'ın gecikmiş seçim deneyi'nde ele alınan kavramları içeren kuantum silgisi deneyinin ayrıntılandırılmış bir türüdür. Deney, kuantum mekaniğindeki iyi bilinen çift yarık deneyinin kendine özgü sonuçlarının yanı sıra kuantum dolanıklığının sonuçlarını araştırmak için tasarlandı.