İçeriğe atla

Eliptik yörünge

Birbirine yakın kütleye sahip iki cisim ortak kütlemerkezleri etrafında eliptik yörüngelerde hareket ederken görülüyor.

Eliptik yörünge, Astronomi ve uzay mühendisliğinde, dışmerkezliği (basıklık) 0'dan büyük ancak 1'den küçük olan yörüngedir. Dışmerkezliği 0'a eşit olan yörünge daireseldir ve bu yörüngeye dairesel yörünge denir. Eliptik bir yörüngede özgül enerji her zaman negatiftir. Hohmann transfer yörüngesi, Molniya yörünge ve Tundra yörünge başlıca eliptik yörüngeler arasındadır.

Hız

Uzay mühendisliğince kabul edilen standart şartlar ve varsayımlar altında, eliptik yörüngede hareket halinde bulunan 0'dan büyük kütleli bir cismin yörüngesel hızı () aşağıdaki şekilde hesaplanabilir.

Burada,

  • standart kütleçekim değişkeni,
  • yörüngeyi çizen cisim ile merkezi kütle arasındaki radyal mesafe,
  • ise yarı-büyük eksen uzunluğudur.

Bu eşitlikten çıkartılacak iki önemli sonuç:

  • Eliptik bir yörüngede yörüngesel hız dışmerkezliğe değil yarı-büyük eksenin () uzunluğuna bağlıdır.
  • Hız ile alakalı bu eşitlik hiperbolik yörüngedeki gibidir. Aralarındaki fark hiperbolik yörüngede 'nın pozitif olmasıdır.

Enerji

Standart şartlar ve varsayımlar altında, eliptik yörüngede hareket eden bir cismin özgül yörüngesel enerjisi () 0'dan küçüktür ve bu yörünge için enerji konservasyon eşitliği,

şeklinde ifade edilir.

Burada,

  • yörüngedeki cismin hızı,
  • yörüngedeki cisim ile merkezi cisim arasındaki radyal mesafe,
  • yarı-büyük eksenin uzunluğum
  • ise standart kütleçekim değişkenidir.

Sonuç:

  • Özgül yörüngesel enerji dışmerkezlikten bağımsızdır ve sadece elipsin yarı-büyük ekseninden etkilenir.

Ayrıca bu noktada halkalanma teoremini kullanarak;

  • Özgül potansiyel enerjinin zaman-ortalamasının 2ε'ye eşit olduğu,
  • r−1'nin zaman-ortalamasının a−1 olarak ifade edilebileceği ve
  • Özgül kinetik enerjinin -ε'ye eşit olduğu bulunabilir.

Uçuş yolu açısı

şeklinde gösterilir. Burada,
  • açısal momentum,
  • yörüngedeki cismin yörüngesel hızı,
  • yörüngedeki cisim ile merkezi cisim arasındaki radyal mesafe,
  • de uçuş yolu açısıdır.

Hareket formülü

Bkz. yörüngesel eşitlik

Ayrıca bakınız

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Yörünge</span> bir gökcisminin bir diğerinin kütleçekimi etkisi altında izlediği yola yörünge adı verilir

Gök mekaniğinde yörünge veya yörünge hareketi, bir gezegenin yıldız etrafındaki veya bir doğal uydunun gezegen etrafındaki veya bir gezegen, doğal uydu, asteroit veya lagrange noktası gibi uzaydaki bir nesne veya konum etrafındaki yapay uydunun izlediği kavisli bir yoldur. Yörünge, düzenli olarak tekrar eden bir yolu tanımlamakla birlikte, tekrar etmeyen bir yolu da ifade edebilir. Gezegenler ve uydular Kepler'in gezegensel hareket yasalarında tanımlandığı gibi, kütle merkezi elips biçiminde izledikleri yolun odak noktasında olacak şekilde yaklaşık olarak eliptik yörüngeleri takip ederler.

<span class="mw-page-title-main">Dış merkezlik (astronomi)</span>

Astrodinamikte, bir astronomik cismin yörünge eksantrikliği, başka cisim etrafındaki yörüngesinin mükemmel bir daireden ne kadar saptığını belirleyen boyutsuz bir parametredir.

<span class="mw-page-title-main">Kinetik enerji</span> bir cismin harekiyle oluşan enerji

Kinetik enerji, fiziksel bir cismin hareketinden dolayı sahip olduğu enerjidir.

Fizikte, kütle, Newton'un ikinci yasasından yararlanılarak tanımlandığında cismin herhangi bir kuvvet tarafından ivmelenmeye karşı gösterdiği dirençtir. Doğal olarak kütlesi olan bir cisim eylemsizliğe sahiptir. Kütleçekim kuramına göre, kütle kütleçekim etkileşmesinin büyüklüğünü de belirleyen bir çarpandır (parametredir) ve eşdeğerlik ilkesinden yola çıkılarak bir cismin kütlesi kütleçekimden elde edilebilir. Ama kütle ve ağırlık birbirinden farklı kavramlardır. Ağırlık cismin hangi cisim tarafından kütleçekime maruz kaldığına göre ve konumuna göre değişebilir.

<span class="mw-page-title-main">Düzgün dairesel hareket</span>

Düzgün dairesel hareket, sabit bir kuvvetin etkisinde, bir çember üzerinde süratin değişmediği harekettir.

<span class="mw-page-title-main">Kurtulma hızı</span> bir cismin kendisini bağlayan kütleçekim alanından kurtulak için varması gereken hız

Fizikte, kurtulma hızı kütleçekim alanındaki herhangi bir cismin kinetik enerjisinin söz konusu alana bağıl potansiyel enerjisine eşit olduğu andaki hızıdır. Genellikle üç boyutlu bir uzayda bulunan cismin kendisini etkileyen kütleçekim alanından kurtulabilmesi için ulaşması gereken sürati ifade eder.

<span class="mw-page-title-main">Dairesel yörünge</span>

Astrodinamikte dışmerkezliği sıfıra eşit olan eliptik yörünge olarak özetlenebilecek dairesel yörünge, tanım olarak fizikte sabit eksen etrafında rotasyonun tipik bir örneğidir. Burada bahsedilen eksen, hareket düzlemine dik olarak kütle merkezlerinden geçen doğrudur.

<span class="mw-page-title-main">Yörüngeler listesi</span> Vikimedya liste maddesi

Yörünge çeşitleri aşağıda listelenmiştir:

Astrodinamik'te delta-v kavramı tam anlamıyla "hızdaki değişiklik" demek olmasına rağmen belirli bir anlamı vardır: sayıl olup sürat birimlerini alarak bir yörünge manevrası yapabilmek, başka bir ifadeyle bir rotadan başka bir rotaya geçmek için gerekecek olan "gayreti" hesaplar.

<span class="mw-page-title-main">Kepler'in gezegensel hareket yasaları</span>

Kepler'in gezegensel hareket yasaları, Güneş Sisteminde bulunan gezegenlerin hareketlerini açıklayan üç matematiksel yasadır. Alman matematikçi ve astronom Johannes Kepler (1572-1630) tarafından keşfedilmişlerdir.

<span class="mw-page-title-main">Parabolik yörünge</span> Dış merkezliği 1 olan yörüngeler

Parabolik yörünge veya kaçış yörüngesi, dış merkezliği 1 olan yörüngelerdir. Yörünge üzerinde bulunan cismin hızı kaçış hızına eşittir ve dolayısıyla herhangi bir gezegenin yer çekimsel kuvvetinden kurtulabilirler. Yörünge üzerindeki cismin hızı arttırıldığı takdirde, hiperbolik yörüngeye geçer.

Fizikte, dairesel hareket bir nesnenin dairesel bir yörünge boyunca bir rotasyon ya da çemberin çevresinde yaptığı harekettir. Rotasyonun sürekli açısal değeriyle birlikte düzgün ya da değişen rotasyon değeriyle düzensiz olabilir. 3 boyutlu bir cismin sabit ekseni etrafındaki rotasyon parçalarının dairesel hareketini içerir. Hareketin denkliği bir cisim kütlesinin merkezini tanımlar.

Kuantum mekaniğinde, spin-yörünge etkileşimi(spin-yörünge etkisi, spin-yörünge bağlaşımı) parçacığın dönüşünün hareketiyle etkileşimidir. En çok bilinen örnek ise, elektronların dönüşü ile elektronların çekirdek etrafındaki dönüşünden dolayı oluşan manyetik alandan dolayı oluşan elektromanyetik etkileşim ve buna bağlı olan elektronların atomik enerji seviyesindeki değişim. Bu tayf çizgilerinden saptanabilir. Buna benzer bir diğer etki proton ve nötronların çekirdekte dönmesinden dolayı oluşan olan Açısal momentum ve güçlü nükleer kuvvet, nükleer kabuk modelindeki değişime neden olur. Spintronik alanında, yarı iletkenlerde ve diğer materyallerde spin yörünge etkileşimi yeni teknolojik gelişimler için araştırılmaktadır.

<span class="mw-page-title-main">Kepler yörüngesi</span> üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklayan kavram

Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.

<span class="mw-page-title-main">Sabit bir eksen etrafında dönme</span> dönme hareketinin özel bir durumu

Sabit bir eksen etrafında dönme dönme hareketinin özel bir durumudur. Sabit eksen hipotez yönünü değiştirerek bir eksen olasılığını dışlar ve salınım devinim gibi olguları tarif edemez. Euler’in dönme teoremine göre, Aynı zamanda, sabit eksenler boyunca eş zamanlı rotasyon imkânsızdır. Eğer iki rotasyona aynı anda kuvvet uygulanırsa, rotasyonun yeni ekseni oluşur.

<span class="mw-page-title-main">Yörünge mekaniği</span>

Yörünge mekaniği veya astrodinamik, roketler ve diğer uzay araçlarının hareketini ilgilendiren pratik problemlere, balistik ve gök mekaniğinin uygulamasıdır. Bu nesnelerin hareketi genellikle Newton'un hareket kanunları ve Newton'un evrensel çekim yasası ile hesaplanır. Bu, uzay görevi tasarımı ve denetimi altında olan bir çekirdek disiplindir. Gök mekaniği; daha genel olarak yıldız sistemleri, gezegenler, uydular ve kuyruklu yıldızlar gibi kütle çekimi etkisinde bulunan yörünge sistemleri için geçerlidir. Yörünge mekaniği; uzay araçlarının yörüngelerine ait yörünge manevraları, yörünge düzlemi değişiklikleri ve gezegenler arası transferler gibi kavramlara odaklanır ve itici manevralar sonuçlarını tahmin etmek için görev planlamacıları tarafından kullanılır. Genel görelilik teorisi, yörüngeleri hesaplamak için Newton yasalarından daha kesin bir teoridir ve doğru hesaplar yapmak ya da yüksek yerçekimini ihtiva eden durumlar söz konusu olduğunda bazen gereklidir.

<span class="mw-page-title-main">Ortalama ayrıklık</span> uzayda bir nesnenin yörüngesini belirtmek için kullanılan yörünge elemanlarından biri

Gök mekaniğinde ortalama ayrıklık, bir eliptik yörünge periyodunun, yörüngedeki cismin periapsis'i geçmesinden bu yana geçen, klasik iki cisim probleminde o cismin konumunun hesaplanmasında kullanılabilecek bir açı olarak ifade edilen kesiridir. Bu, hayali bir cismin, eliptik yörüngesindeki gerçek cisimle aynı yörünge peryodunda, sabit hızla dairesel bir yörüngede hareket etmesi durumunda sahip olacağı çevre merkezden açısal uzaklıktır.

Dinamik yöntem, asteroitlerin kütlelerinin belirlenmesine yönelik bir işlemdir. Yöntem adını, Güneş Sistemi etrafında hareket eden asteroitlerin dinamiğine ya da hareketine ilişkin Newton yasalarını kullanmasından almaktadır. Bu yöntem, iki ya da daha fazla asteroidin birbirlerinin yanından geçerken neden oldukları yerçekimsel sapmayı belirlemek için çoklu konum ölçümleri yapılmasıyla uygulanmaktadır. Yöntem, bilinen çok sayıda asteroitin zaman zaman çok yakın mesafelerde bir diğerinin yanından geçeceği olgusuna dayanır. Etkileşen iki cisimden en az biri yeterince büyükse, diğeri üzerindeki yerçekimi etkisiyle cismin kütlesi belirlenebilir. Belirlenen kütlenin doğruluğu, belirli bir etkileşimin neden olduğu yerçekimsel sapmayı belirlemek için yapılan uygun astrometrik gözlemlerin hassasiyeti ve zamanlaması ile sınırlıdır.

<span class="mw-page-title-main">Gerçek anomali</span>

Gerçek anomali, gök mekaniğinde Kepler yörüngesinde hareket etmekte olan bir cismin pozisyonunu belirleyen açısal bir parametredir. Gerçek anomali, bir yörüngedeki çeşitli noktaların konumlarını tanımlamak için kullanılan bir terimdir. Enberi noktası yönü ile elipsin ada odağından görünen cismin mevcut konumu yani nesnenin etrafında döndüğü nokta arasındaki açıyı göstermektedir.

<span class="mw-page-title-main">Dışmerkezlik vektörü</span> gök mekaniğinde,  enöteden enberiye doğru yönelen boyutsuz bir vektördür

Gök mekaniğinde bir Kepler yörüngesinin dışmerkezlik vektörü, enöteden enberiye doğru yönelen ve büyüklüğü yörüngenin ölçülebilir dışmerkezliğine eşit olan boyutsuz bir vektördür. Kepler yörüngeleri için dışmerkezlik vektörü bir hareket sabitidir. Başlıca kullanım alanı neredeyse dairesel yörüngelerin analizidir, çünkü gerçek bir yörünge üzerindeki tedirgin edici kuvvetler, dışmerkezliğin sıfır olmasının bir tekilliğe karşılık geldiği dışmerkezlik ve enberi açısı prametrelerinin aksine, salınan dışmerkezlik vektörünün sürekli olarak değişmesine neden olacaktır.