İçeriğe atla

Eliptik-eğri Diffie–Hellman

Eliptik Eğri Diffie-Hellman (ECDH), güvensiz bir kanal üzerinden paylaşılan bir giz (İngilizce: secret) oluşturmak için her biri eliptik-eğri açık-özel anahtar çiftine sahip iki partiye izin veren anonim bir anahtar anlaşma protokolüdür.[1][2][3] Bu paylaşılan sır doğrudan bir anahtar olarak veya başka bir anahtar türetmek için kullanılabilir. Anahtar veya üretilen anahtar, daha sonra sonraki iletişimleri, bir simetrik anahtar algoritması kullanarak şifrelemek için kullanılabilir. Bu, Diffie-Hellman protokolünün eliptik eğri kriptografisi kullanan bir çeşididir.

Anahtar oluşturma protokolü

Sıradaki örnek anahtar oluşturulmasının nasıl yapıldığını açıklayacak. Diyelim ki Alice, Bob ile paylaşılan bir anahtar oluşturmak istiyor,ama ikisi için uygun olan tek kanal, üçüncü bir parti tarafından gizlice dinlenebilir. Başlangıçta, etki alanı parametreleri (yani, asal durumda veya ikilik taban durumunda ) konusunda anlaşma sağlanmalıdır. Ayrıca, her partinin eliptik eğri kriptografisine uygun, özel anahtar ( aralığından rastgele seçilmiş bir tam sayı) ve bir noktası (, yani 'nin kendisine defa eklendiğinde çıkan sonuç) ile gösterilen bir açık anahtardan oluşan bir anahtar çifti olmalıdır. Alice'in anahtar çifti , Bob'un anahtar çifti olsun. Her parti diğer partinin protokol çalıştırılmadan önceki açık anahtarını bilmelidir.

Alice noktasını hesaplar. Bob noktasını hesaplar. Paylaşılan giz (İngilizce: secret), 'dır (noktanın x koordinatı). ECDH'e dayalı en standart hale getirilmiş protokoller, hash tabanlı anahtar üretim fonksiyonu kullanarak, 'dan simetrik anahtar üretir.

İki tarafın da hesapladığı paylaşılan giz eşittir, çünkü 'dır.

Alice'in başlangıçta açıkladığı özel anahtarı hakkında tek bilgi açık anahtarıdır. Yani, Alice'ten başka hiçbir parti, eliptik eğri ayrık logaritma problemini çözmedikçe Alice'in özel anahtarına karar veremez. Bob'un özel anahtarı da aynı şekilde güvendedir. Alice ve Bob'dan başka hiçbir parti, eliptik eğri Diffie-Hellman problemini çözmedikçe paylaşılan secreti hesaplayamaz.

Açık anahtarlar ya statiktir (ve güvenilirdir, mesela bir sertifika aracılığıyla) ya da geçicidirler (ECDHE olarak da bilinir, son E'nin "geçici" anlamına gelen "ephemeral"in baş harfidir.). Geçici anahtarlar geçicidir ve kimlik doğrulamasına gerek yoktur, yani eğer kimlik doğrulaması yapmak istenirse, authenticity başka yollarla sağlanmalıdır. Kimlik doğrulaması, ortadaki adam saldırılarından korunmak için gereklidir. Eğer Alice veya Bob’dan birinin açık anahtarı statik ise, ortadaki adam saldırıları önlenmiştir. Statik açık anahtarlar, diğer gelişmiş güvenlik özelliklerindenileriye dönük gizlilik (İngilizce: forward secrecy) veya anahtar-uzlaşma kimliğe bürünme esnekliği (İngilizce: key-compromise impersonation resilience) sağlamaz. Statik özel anahtarı olanlar, diğer açık anahtarı doğrulamalı ve statik özel anahtarla ilgili bilgi sızdırmamak için ham Diffie-Hellman paylaşılan gizine güvenli bir anahtar türetme fonksiyonu uygulamalıdır. Diğer güvenlik özelliklerine sahip programlar için MQV'ye bakınız.

Paylaşılan bir giz doğrudan bir anahtar olarak kullanılabilir, genelde Diffie-Hellman değişiminden kaynaklanan zayıf bitleri ortadan kaldırmak için gizi hashlemek tercih edilir.[4]

Ayrıca bakınız

Kaynakça

  1. ^ NIST, Özel Yayın 800-56A, Kesikli Logaritma Şifrelemesi Kullanarak Çift Anahtarlı Anahtar Kuruluş Şemaları için Tavsiye 14 Temmuz 2007 tarihinde Wayback Machine sitesinde arşivlendi., Mart 2006.
  2. ^ Certicom Research, Etkili şifreleme standartları, SEC 1: Eliptik Eğri Şifreleme 11 Kasım 2014 tarihinde Wayback Machine sitesinde arşivlendi., Versiyon 2.0, 21 Mayıs 2009.
  3. ^ NSA Suite B Şifreleme, Suite B Uygulayıcıların NIST SP 800-56A Kılavuzu 6 Mart 2016 tarihinde Wayback Machine sitesinde arşivlendi., 28 Temmuz 2009.
  4. ^ Tibor Jager; Jorg Schwenk; Juraj Somorovsky (4 Eylül 2015). "Practical Invalid Curve Attacks on TLS-ECDH" (PDF). European Symposium on Research in Computer Security (ESORICS'15). 5 Ağustos 2019 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 15 Mart 2020. 
  5. ^ JI (13 Ekim 2015). "New generation of safe messaging: "Letter Sealing"". LINE Engineers' Blog. LINE Corporation. 1 Şubat 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Mart 2020. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

<span class="mw-page-title-main">Polinom</span> değişkenlerin çarpımlarının toplamı, değişkenlerin gücü ve katsayılar

Matematikte, bir polinom belirli sayıda bağımsız değişken ve sabit sayıdan oluşan bir ifadedir. Polinom kendi içinde toplama, çıkarma, çarpma ve negatif olmayan sayının üssünü alma işlemlerini kullanır. Örnek olarak tek bilinmeyenli bir polinom olan x2 − 4x + 7, ikinci dereceden oluşan bir polinomdur. Diğer bir örnek olarak, x2 − 4/x + 7x3/2 bir polinom değildir, çünkü polinomlarda terimlerin derecelerinin doğal sayı olma zorunluluğu vardır 2. terimde x′i ele alan bir bölme işlemi x'in derecesini negatif yapmaktadır ve 3. terim doğal sayı olmayan bir derece içermektedir (3/2).

<span class="mw-page-title-main">Elips</span>

Geometride, elips bir koninin bir düzlem tarafından kesilmesi ile elde edilen düzlemsel, ikinci dereceden, kapalı eğridir.

RSA, güvenliği tam sayıları çarpanlarına ayırmanın algoritmik zorluğuna dayanan bir tür açık anahtarlı şifreleme yöntemidir. 1978’de Ron Rivest, Adi Shamir ve Leonard Adleman tarafından bulunmuştur. Bir RSA kullanıcısı iki büyük asal sayının çarpımını üretir ve seçtiği diğer bir değerle birlikte ortak anahtar olarak ilan eder. Seçilen asal çarpanları ise saklar. Ortak anahtarı kullanan biri herhangi bir mesajı şifreleyebilir, ancak şu anki yöntemlerle eğer ortak anahtar yeterince büyükse sadece asal çarpanları bilen kişi bu mesajı çözebilir. RSA şifrelemeyi kırmanın çarpanlara ayırma problemini kırmak kadar zor olup olmadığı hala kesinleşmemiş bir problemdir.

ElGamal şifrelemesi, Diffie-Hellman anahtar alış-verişi'ne dayanan bir asimetrik şifreleme algoritması olup Taher Elgamal tarafından 1984 yılında önerilmiştir.

Doğum günü akını, olasılık kuramındaki doğum günü probleminin ardındaki matematiği kullanan bir kriptografik akındır. Akının amacı bir f işlevine girdi olarak verilen ve 'nin koşulunu sağlamasıdır. Böyle bir ikilisi çakışma olarak adlandırılmaktadır. Çakışma bulma yöntemi, f işlevini gelişigüzel girdilerle hesaplayıp çakışma koşulunun sağlanıp sağlanmadığını incelemektir. Bu yöntem, yukarıda sözü edilen doğum günü probleminden yararlanır. Şöyle ki; bir işlevi eşit olasılıklı farklı sonuç üretiyorsa ve yeterince büyükse koşulunu sağlayan ve değerleri kolayca bulunabilir.

Ortada buluşma akını, doğumgünü akınına benzer biçimde çalışan bir kriptografik akındır. Doğumgünü akını, bir işlevin aynı çıktıya sahip iki farklı değerine ulaşmaya çalışırken ortada buluşma akını, bu işlemi iki işlevin görüntü ve değerler kümesi üzerinde uygular. Şöyle ki; ilk işlevden ikinci işleve yapılan eşleme ikinci işlevin ilk işlev üzerindeki görüntüsüne eşit olmalıdır. Bir başka deyişle, bu iki değer ortada buluşmalıdır.

<span class="mw-page-title-main">Dijital İmza Algoritması</span>

Dijital İmza Algoritması dijital imza için bir FIPS standardıdır. Ağustos 1991'de National Institute of Standards and Technology (NIST) tarafından tasarlanmıştır. Dijital imza algoritması, ElGamal İmza Algoritması'nın bir varyantıdır.

Paillier şifrelemesi , 1999’da Pascal Paillier tarafından geliştirilen olasılıksal açık anahtarlı şifreleme yöntemidir. n’inci kök sınıflarını hesaplamanın zorluğunu kullanan Paillier şifreleme sistemi, kararsal bileşik kök sınıfı varsayımı üzerine kurulmuştur. Sistem, toplama işlemine göre homomorfik özellik gösterir; yani sadece açık anahtarı, ve ’nin şifrelemesini kullanarak ’nin şifrelenmiş hâli hesaplanabilir.

Goldwasser–Micali (GM) kriptosistemi 1982 yılında Shafi Goldwasser ve Silvio Micali tarafından geliştirilmiş bir asimetrik anahtar şifreleme algoritmasıdır. GM standart kriptografik varsayımlar altında güvenliği kanıtlanmış ilk probabilistik açık anahtar şifreleme yöntemidir. Bununla birlikte başlangıç düz metinden yüzlerce kez daha geniş olan şifreli metinler olduğundan verimli bir kriptosistem değildir. Kriptosistemin güvenlik özelliğini kanıtlamak için Shafi Goldwasser ve Silvio Micali anlamsal güvenliğin geniş alanda kullanılan bir tanımını önerdiler.

<span class="mw-page-title-main">Diffie-Hellman anahtar değişimi</span> dünyanın enyuksek dagı

Diffie-Hellman anahtar değişimi (D-H), kriptografik anahtarların değişiminde kullanılan özel bir yöntemdir. Bu kriptografi alanında uygulanan ilk pratik anahtar değişimi örneklerinden biridir. Diffie-Hellman anahtar değişimi metodu, güvenilmeyen bir sistem üzerinden iletişim kurmak isteyen karşılıklı iki tarafın ortaklaşa bir anahtar üzerinde karar kılabilmesine olanak sağlar. Böylece, iki tarafın da karar kıldığı bir simetrik anahtar, güvenli olmayan sistem üzerinden iletişimi şifrelemek için kullanılabilir. Diffie-Hellman protokolünde amaç, iletişim kurmak isteyen iki taraf arasındaki anahtar değişim prosedürünü, anahtarın kötü tarafların eline geçmediğine emin olacak şekilde güvenli bir şekilde gerçekleştirmektir. Bu işlem bir defa yapıldığında ve taraflar bir anahtar üzerinde ortaklaştığında her iki taraf da kendi mesajını paylaşılan anahtarla şifreleyebilir, böylece taraflar arasındaki iletişim güvenli bir şekilde sağlanmış olur.

Okamoto–Uchiyama kriptosistemi, 1998'de T. Okamoto ve S. Uchiyama tarafından bulundu. Sistem kümesinde çalışır, n p2q ya eşittir ve p ve q büyük asal sayılardır.

BB84, Charles Bennett ve Gilles Brassard tarafından 1984 yılında geliştirilen bir kuantum anahtar dağıtımı yöntemidir. İlk kuantum kriptografi yöntemidir. Protokol bilgiyi taşıyan kuantum parçalarının birbirine dik olmamasına dayanan bir güvenliğe sahiptir. Genelde gizli bir anahtarın karşıya güvenli olarak iletilmesi için kullanılabilecek bir protokol olarak açıklanır.

<span class="mw-page-title-main">Eliptik eğri kriptografisi</span>

Eliptik Eğri Kriptolojisi, sonlu cisimler üzerindeki eliptik eğrilerin cebirsel topolojisine dayanan bir açık anahtar şifrelemesidir. Eliptik Eğri Kriptolojisi, diğer şifrelemeler göre daha küçük anahtar boyuna ihtiyaç duyar.

Kriptolojide, Curve25519 256-bit anahtar boyutu için 128-bit güvenlik sağlayan ve eliptik eğri Diffie–Hellman (ECDH) anahtar değişim protokolu ile kullanılması için tasarlanan bir eliptik eğridir. ECC eğrileri içinde en hızlılarından biridir ve bilinen herhangi bir patent kapsamında değildir.

SPEKE, açılımı Basit Parola Üssel Anahtar Değişimi olan, parola doğrulamalı anahtar anlaşmas için kullanılan kriptografik bir yöntemdir.

Kriptografide Eliptik Eğri Dijital İmza Algoritması (ECDSA), eliptik eğri şifrelemesi kullanan birçok çeşit Dijital İmza Algoritması (DSA) sunar.

Şifrelemede Eşzamanlı Eşit Kimlik Doğrulama (SAE), parola tabanlı güvenli bir kimlik doğrulama ve parola doğrulanmış anahtar anlaşma yöntemidir.

Curve448 veya Curve448-Goldilocks, kriptografide, 224 bitlik güvenlik sunan ve Eliptik-eğri Diffie–Hellman (ECDH) anahtar anlaşması ile kullanımı için tasarlanmış bir eliptik eğridir. Rambus Cryptography Research'ten Mike Hamburg tarafından geliştirilen Curve448, karşılaştırılabilir güvenlikle, literatürdeki mevcut eğrilere göre hızlı performansa olanak sağlar. Referans gerçekleme, MIT lisansı altında mevcuttur. Eğri, Internet Research Task Force Crypto Forum Research Group tarafından Curve25519 ile birlikte gelecek TLS standartlarına alınmak için onaylanmıştır. 2017'de NIST, Curve25519 ve Curve448'in ABD Federal Hükûmeti tarafından kullanılmak üzere onaylanmış eliptik eğrileri belirten 800-186 Özel Yayınına ekleneceğini açıkladı. Her ikisi de RFC 7748'de açıklanmıştır.

<span class="mw-page-title-main">Needham–Schroeder protokolü</span>

Needham–Schroeder protokolü her ikisi de Roger Needham ve Michael Schroeder tarafından önerilen güvenli olmayan bir ağ üzerinde kullanılması amaçlanan iki anahtar taşıma protokolünden biridir. Bunlar: