İçeriğe atla

Elektrozayıf etkileşim

Parçacık fiziğinde elektrozayıf etkileşim, doğanın bilinen iki veya dört temel etkileşiminin birleşimin bir tanımıdır: elektromanyetizm ve zayıf etkileşim. Her gün düşük enerjilerde, bu iki kuvvet çok farklı oluşsa da, teori modelleri aynı kuvvetin iki farklı etkisi gibidir. Yukarıdaki birleştirme enerjisi, yaklaşık 100 GeV, tek bir elektrozayıf kuvvet oluşturabilir. Bu yüzden, eğer evren yeterince sıcaksa (Big Bang'den kısa bir sonra olan bir sıcaklık ortalama 1015 K), elektromanyetik kuvvet ve zayıf kuvvet birleşmiş bir elektrozayıf kuvvete dönüşür. Elektrozayıf dönem boyunca, zayıf kuvvet güçlü kuvvetten ayrılır. Kuark dönem boyunca, elektrozayıf kuvvet elektromanyetik ve zayıf kuvvetten ayrılır.

Sheldon Glashow, Abdus Salam ve Steven Weinberg, temel parçacıklar arasındaki zayıf ve elektromanyetik etkileşimin birleşimine katkılarından ötürü 1979'da Nobel Fizik ödülünü aldılar. Elektrozayıf etkileşimlerin varlığı deneysel olarak iki adımda sabitlendi, ilki 1973'te Gargamelle işbirliği ile nötrino saçılmasındaki nötr akımların keşfiydi. Ikincisi ise dönüşmüş Super Proton Synchroton'undaki proton/antiproton çarpışmalarının W ve Z ölçü bozonlarının keşfini içeren 1983'teki UA1 ve UA2 işbirliğidir. 1999 yılında Gerardus 't Hooft ve Martinus Veltman elektrozayıf teorinin yeniden normalleştirilebildiğini gösterdiği için Nobel ödülü aldı.

Gelişimi

Uzun zamandır, zayıf kuvvetin elektromanyetik kuvvetle yakın bir ilişisinin bulunduğu düşünülüyordu. Nihayet, 10−18 m gibi küçük mesafelerde zayıf etkileşimin gücünün, elektromanyetik etkileşiminkiyle kıyaslanabilir olduğu belirlendi. Öte yandan, bunun 30 misli, yani 3x10−17 m mesafe düzeyinde, zayıf etkileşimin gücü, elektromanyetik etkileşiminkinin 1/10,000'ine iniyordu. Bir nötron veya protonu oluşturan kuarkların arasındaki tipik mesafelerde (10−15 m) ise, bu oran çok daha küçülüyordu. Sonuç olarak, zayıf ve elektromanyetik kuvvetlerin gücünün, esas olarak eşit düzeyde olduğu sonucuna varıldı. Çünkü bir etkileşimin gücü, taşıyıcı parçacığın kütlesine ve etkileşim mesafesine, güçlü bir şekilde bağlıydı. İki kuvvetin güç düzeyleri arasındaki gözlemlenen fark, görece çok ağır olan W ve Z parçacıkları ile, bilindiği kadarıyla kütlesi olmayan foton arasındaki kütle farkından kaynaklanıyordu.

Sonuç olarak Standart Model'de elektromanyetik ve zayıf etkileşim; Glashow, Salam ve Weinberg tarafından geliştirilmiş olan birleşik bir 'elektrozayıf' kuramda birleştirilmiş bulunuyor. Bu iki alanın 'Birleşik Alanlar Kuramı;' o zamana kadar zayıf etkileşimin tek taşıyıcısı olduğu düşünülen W parçacıklarının kütlesini hesaplayabildiği gibi, yeni bir tür zayıf etkileşimin ve bu etkileşimin taşıyıcısı olan Z parçacığının varlığını da öngördü.

Bu kuvvetlerin birleştirilmesi ve tek bir teoriyle açıklanması bu kişilere 1979 Nobel ödülünü kazandırmıştır. Bu teorinin kurulması, fizikçilerin yıllardır kurmaya çalıştıkları büyük birleşik teoriye giden yolda atılan ilk başarılı adımdır. Daha önce Albert Einstein, kütleçekim ile elektromanyetik kuvveti birleştirmeye çalışmış ancak başarısız olmuştu.

Formülasyon

Bilinen bazı temel parçacıklar; zayıf eşspin modeli T3, zayıf aşırıyük YW, zayıf birleşme açısı boyunca Q elektrik yükünü gösteriyor. Nötr Higgs alanı (çevrelenmiş) elektrozayıf simetriyi bozar ve kütlesini diğer parçacıklara vermek için onlarla etkileşime geçer. Higgs alanının üç bileşeni çok büyük W ve Z bozonlarının bir parçası olmaya başlar.

Matematiksel olarak, birleşime bir SU(2) × U(1)  ölçüm grubu altında ulaşılır. Ilgili ayar bozonları SU(2) (W1, W2, and W3)'dan zayıf eşspinli üç W, U(1)'den zayıf aşırıyüklü B bozonudur ve hepsi kütlesizdir.

Standart modelde W, Z bozonları ve foton; Higgs mekanizmasının neden olduğu SU(2) × U(1)Y to U(1)em'dan elektrozayıf simetrinin ani simetri bozulması ile üretilir. U(1)Y and U(1)em, U(1)'in farklı kopyalarıdır ve üretici U(1)em, Q = Y/2 + I3 olarak verilir; Y U(1)Y'in üreticisidir; I3 ise SU(2)'nin üreticilerinden (zayıf eşspinin bir bileşeni) biridir.

Ani simetri bozulması W3 ve B bozonlarının iki farklı bozon gibi davranmasına yol açar - Z0 ve (γ) aşağıdaki gibidir:

θW zayıf birleşme açısıdır. Parçacıkları gösteren eksenler (W3, B) düzlemi boyunca θW açısı ile dönmüştür. Bu durum Z0 kütlesi ve W± arasında bir çelişki yaratır (sırasıyla MZ ve MW)

W1 ve W2 bozonları daha büyük yüklü bozonlar oluşturmak için birleşir:

Elektromanyetizm ve zayıf kuvvet arasında fark oluşur, çünkü Higgs bozonu için Y ve I3‘ün doğrusal birleşimi vardır. U(1)em bu doğrusal birleşme tarafından üretilen grup olarak tanımlanır ve Higgs ile etkileşmediğinden bozulmaz.

Lagrangian

Elektrozayıf simetrinin bozulmasından önce

Elektrozayıf etkileşimleri Lagrangian, elektrozayıf simetriden önce dört gruba ayırdı

terimi üç tane W parçacıkları ve B parçası arasında etkileşimi tanımlar,

() ve zayıf eşspinler ve zayıf aşırıyüklü alanlar için alan güçlendirici tensörlerdir.

standard Model fermionlarının kinetik bir terimidir. Ayar bozonları ve fermionlar arasındaki etkileşim ölçü aleti eşdeğişken türev boyuncadır.

 üç nesil fermionu geçer , ve sol el çiftleri, sağ el teklileri ve sağ el tekli kuark alan aşağısıdır ve  sol el çiftleri ve sağ el tekli elektron alanlarıdır.

h Higgs alanını F tanımlar.

y terimi Higgs beklenen bir vakum değerini elde ettikten sonra fermion kütlelerini oluşturan Yukawa etkileşimini verir.

Elektrozayıf simetrinin bozulmasından sonra

Higgs beklenen bir vakum değerini elde ettikten sonra Lagrangian bunu tekrar tanımlar. Karmaşıklığından ötürü, Lagrangian aşağıdaki denkliği birçok parçaya ayırarak tanımlamıştır.

Kinetik terim  Lagrangian'ın kısmi türevler(dinamik terimler) ve kütle terimleri(simetri bozulmadan önce Lagrangian'da yoktu) gibi tüm ikinci dereceden terimlerini içerir.

toplam fermion teorisine geçer (quarklar ve leptonlar), alanlar , , , and and aşağıda verilir:

(ilgili alanı X ile yer değiştirin ve ayar grubu için yapı sabitleri fabc).

Lagrangian'ın bileşenleri nötr akım  ve yüklü akım  fermionlar ve ayar bozonları arasında bir etkileşim içerir.

Elektromanyetik akım ve nötr zayıf akım  dır,

ve

ve  fermionların zayıf eşspin ve elektrik yükleridir.

Lagrangian'ın yüklü akım kısmı şöyledir:

 Higgs üç noktası ve dört noktalı kendi etkileşim terimini içerir.

ayar vektör bozonları ile Higss etkileşimi içerir.

  üç noktalı kendi etkileşim ayarlarını içerir.

dört noktalı kendi etkileşim ayarlarını içerir.

fermionlar ve Higgs alanı arasında Yukawa etkileşimlerini içerir.

Zayıf eşleşmelerde   faktörlerini not edin: bu faktörler spinör alanlarının sol el bileşenlerini yansıtır. Bu yüzden elektrozayıf teoriye (simetri bozulduktan sonra) yaygın olarak kiral(bakışımsız) teori de denmektedir.

İlgili Araştırma Makaleleri

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır

<span class="mw-page-title-main">Ayar teorisi</span> Fizikte bir teori

Ayar teorisi veya ayar kuramı, kuramsal fizikte temel etileşmeleri açıklar. Türkçede bazen yerelleştirilmiş bakışım kuramı olarak da geçer.

Değişken değiştirme, İntegral, çarpanlara ayırma, denklemler, üslü denklemler, trigonometri ve diferansiyel denklemler başta olmak üzere matematiğin her alanında işlemi basitleştirmek için kullanılan matematiksel bir yöntemdir.

<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Bu bir Küresel harmonikler ortonormalize tablosudur ve Bu Condon-Shortley fazı l = 10 dereceye kadar sağlanır.Bazen bu formüllerin "Kartezyen" yorumu verilir.Bu varsayım x, y, z ve r Kartezyen-e-küresel koordinat dönüşümü yoluyla ve ye ilişkindir:

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

Matematikte, uzunluğu 1 olan ve uzayda bir norma sahip olan vektöre birim vektör denir. Birim vektör genellikle ‘û‘ gibi şapkalı ve küçük harflerle ifade edilir. Normalize vektör veya versor olmayan bir sıfır vektörü u ile eş yönlü olan birim vektörü u

Paramanyetik bir malzemede, malzemenin mıknatıslanması genel olarak uygulanan manyetik alanla orantılıdır. Fakat eğer malzeme ısıtılırsa, bu oran düşer: Belirli bir sıcaklığa kadar, mıknatıslanma sıcaklıkla ters orantılıdır. Bu kavram “Curie Yasası” tarafından kapsanmaktadır:

<span class="mw-page-title-main">Kepler yörüngesi</span> üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklayan kavram

Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.

Yüklü akım etkileşimi, atom altı parçacıkların zayıf kuvvet yoluyla etkileşime girme yollarından biridir.
W+
ve
W-
bozonları
buna aracılık eder.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

<span class="mw-page-title-main">Gerçek anomali</span>

Gerçek anomali, gök mekaniğinde Kepler yörüngesinde hareket etmekte olan bir cismin pozisyonunu belirleyen açısal bir parametredir. Gerçek anomali, bir yörüngedeki çeşitli noktaların konumlarını tanımlamak için kullanılan bir terimdir. Enberi noktası yönü ile elipsin ada odağından görünen cismin mevcut konumu yani nesnenin etrafında döndüğü nokta arasındaki açıyı göstermektedir.

<span class="mw-page-title-main">Episikloid</span> Matematikte bir yuvarlanma eğrisi

Geometride, bir episikloid, sabit bir çemberin etrafında kaymadan yuvarlanan bir çemberin çevresi üzerinde seçilen bir noktanın yolunu izleyerek üretilen bir düzlem eğrisidir -buna episikl (epicycle) denir. Bu, yuvarlanma eğrisinin özel bir türüdür.

<span class="mw-page-title-main">Casorati-Weierstrass teoremi</span>

Karmaşık analizde Casorati-Weierstrass teoremi, holomorf fonksiyonların esaslı tekillikler civarındaki olağanüstü davranışlarını açıklayan bir ifadedir. Teorem, Karl Theodor Wilhelm Weierstrass ve Felice Casorati'ye atfen isimlendirilmiştir.