İçeriğe atla

Elektrostatik boşalma

Elektrostatik boşalma (ESD, Electrostatic Discharge), elektriksel yüklü iki nesnenin temasıyla gerçekleşen ani bir elektrik akımı, kısa devre veya dielektrik bozulması dır. Statik elektriğin artışı sürtünme ile yüklenmeden veya elektrostatik indüksiyondan kaynaklanabilir. ESD, farklı yüklü iki nesne bir araya getirildiğinde veya aralarındaki dielektrik bozulduğunda genellikle görülebilir bir kıvılcım yaratarak meydana gelir.

ESD olağanüstü kıvılcımlar (gök gürültüsü nün eşlik etmesiyle birlikte şimşek büyük çapta bir ESD olayıdır) veya görülüp duyulamasa da yine de hassas elektronik araçlara zarar vermek için oldukça yeterli olan daha az belirgin şekiller yaratabilir. Elektrik kıvılcımları şimşek çakmasında olduğu gibi, havada yaklaşık 4 kV/cm‘ nin üstünde alan gücü gerektirir. ESD'nin diğer biçimleri keskin elektrotların corona boşalması ile keskin olmayan elektrotların sızmayla boşalım ıdır.

ESD, endüstrideki önemli zararlı etkilerinin bir kısmına sebep olabilir (Gaz, buhar yakıtları; kömür tozu patlamaları ve katı hal elektroniğinin bütünleşik devreler gibi bazı bileşenlerindeki başarısızlığı dahil olmak üzere). Bunlar yüksek voltaja maruz kaldığında kalıcı hasara uğrayabilir. Elektroniğin üreticileri bu yüzden, elektriklenmeyi önleyici tedbirler alarak (yüksek elektriksel yüklü malzemelerden kaçınarak ve insan çalışanları topraklayıp, akımtoplamaz araçlar temin edip, nemliliği kontrol edip statik elektriği yok edici tedbirler alarak) statik elektriği olmayan elektrostatik koruma alanları saptamıştır.

ESD simülatörleri elektronik araçları denemek için kullanılabilir. (Örneğin, insan vücudu modeli ile elektrik yüklü araç modeli)

Nedenleri

ESD'nin bir nedeni statik elektrik tir. Statik elektrik genellikle sürtünme ile yüklenme (iki maddenin temas ettirilip daha sonra ayrılmasıyla meydana gelen elektrostatik yük dağılımı) dolayısıyla ortaya çıkar. Halıda yürümek, plastik bir tarağı kuru saça sürtmek, bir balonu süvetere sürtmek, bir arabanın kumaş koltuğunda yükselmek veya bazı plastik ambalajları sökmek sürtünme ile elektriklenmenin örneklerindendir.

Yüklü nesnelerin yanında yükleri ayrışmış, yani kutuplaşmış cisimler de ESD nedeni olabilir. Asıl neden statik elektrik yüküdür ve belirli bir kutbiyetteki nesnede bekleme durumunda (potansiyel) olan yükler farklı bir potansiyelde nesneye temas ettirildiğinde veya yaklaştırıdığında potansiyel farkına bağlı olarak boşalmaya neden olur.[1]

ESD zararının bir diğer nedeni de elektrostatik indüksiyon dur. Elektrostatik indüksiyon, elektriksel yüklü bir nesne, topraktan ayrılan iletken bir maddenin yanına yerleştirildiğinde meydana gelir. Yüklü nesnenin bulunması, diğer nesnenin yüzeyindeki elektriksel yüklerin yeniden dağılmasına neden olan elektrostatik bir alan yaratır. Nesnenin toplam elektrostatik yükü değişmese de artık, aşırı pozitif ve negatif yük bölgelerine sahip olur. Nesne iletken yol ile temasa geçtiğinde bir ESD olayı meydana gelebilir. Örneğin, strafor kupa veya çantanın yüzeyindeki yüklü bölgeler elektrostatik indüksiyon sayesinde, ESD'ye hassas bileşenlerde potansiyel indükleyebilir ve eğer bu bileşen metalik bir araçla temas ettirilirse bir ESD olayı meydana gelebilir.

Biçimleri

ESD'nin en olağanüstü biçimi, güçlü bir elektrik alanın havada iyonlaşmış bir iletken kanal yaratmasıyla meydana gelen kıvılcımdır. Bu olay insanlar üzerinde ufak rahatsızlıklara, elektronik donanımlarda şiddetli zararlara ve eğer hava yanıcı gazlar ve parçacıklar içeriyorsa yangınlara ve patlamalara sebep olabilir.

Fakat çoğu ESD olayı, görülemeyen ve işitilemeyen kıvılcımlar olmaksızın meydana gelir. Nispeten daha küçük elektrik yükü taşıyan bir kişi, hassas elektronik bir bileşene zarar verebilecek kadar yeterli bir boşalımı hissedemeyebilir. Bazı araçlar 30V kadar küçük bir boşalım ile zarar görebilir. ESD'nin bu görülemeyen biçimleri doğrudan elektronik araç bozukluklarına veya araçların uzun zaman güvenilebilirliği ve performansındaki verim kaybının daha az belirgin biçimlerine sebep olabilir. Bazı araçlardaki bozulma, hizmet süresi boyunca bariz olmayabilir.

Kıvılcımlar

Kıvılcım, elektrik alan gücünün yaklaşık 4-30kV/cm'i (havanın dielektrik alan gücü) aşmasıyla tetiklenir. Bu olay dielektrik bozulması olarak adlandırılan süreçte havanın geçici süreliğine ansızın elektriksel bir iletken olmasına sebep olarak, havadaki serbest elektron ve iyon sayısında çok ani bir artışa neden olabilir.

Muhtemelen doğal kıvılcımın en bilinen örneği şimşektir. Bu durumda bulut ve yer arasındaki veya iki bulut arasındaki elektrik potansiyeli sıklıkla yüz milyonlarca volt kadardır. Bunun sonucunda oluşan ve hareket kanalı boyunca devir yapan akım devasa boyutta bir enerji transferine sebep olur. Çok daha küçük bir ölçekte, kıvılcımlar havada elektrostatik boşalmalar boyunca 380 V kadar az yüklü nesnelerden meydana gelebilir. (Paschen's yasası) Dünya atmosferi %21 oksijen (O2) ve %78 azottan (N2) oluşur. Şimşek çakması gibi bir elektrostatik boşalma boyunca, etkilenen atmosferik moleküller elektriksel olarak çok gerilir. İki atomlu oksijen molekülleri ayrılır. Kararsız veya metaller ve organik maddelerle tepkimeye giren ozon (O3) biçimine girerler. Eğer elektriksel gerilim yeteri kadar yüksekse, azot oksit ler (NOx) oluşabilir. Her iki ürün de hayvanlar için zehirleyicidir ve azot oksitler azot fiksasyonu için gereklidir. Ozon, ozon ayrışımı ile tüm organik maddelere tutunur ve su arıtımı nda kullanılır.

Kıvılcımlar, kolay tutuşabilen ortamlar için yanma kaynağıdır ve bu yoğun yakıt ortamlarında yıkıcı patlamalara sebep olabilir. Çoğu patlama, bilinen bir açık hava kıvılcım cihazını istila eden beklenmeyen bir yakıt sızıntısı veya bilinen yakıtça zengin bir çevrede beklenmeyen bir kıvılcım olup olmadığı önemli olmaksızın çok küçük bir elektrostatik boşalma sonrasında gerçekleşir. Eğer oksijen mevcut ve ateş üçgeni nin üç koşulu da bir araya gelmişse, sonuçta olan aynıdır.

Elektroniklerde zarar önleme

Bir uzay aracının static boşaltıcı sının bir bölümü.

Birçok elektronik bileşen, özellikle mikroçipler, ESD tarafından zarar görebilir. Hassas bileşenler; imalat süresince ve sonrasında, nakliyat ve parça montajı süresince ve bitirilmiş halinde korunmaya ihtiyaç duyar.

İmalat süresince koruma

İmalatta ESD'nin önlenmesi Elektrostatik Boşalma Korunmalı Alan (EPA, Electrostatic Discharge Protected Area) temel alınarak sağlanır. EPA küçük bir çalışma alanı veya büyük bir imalat alanı olabilir. EPA'nın temel ilkesi, ESD'ye hassas elektroniklerin yakınlarında yüksek yüklü malzemeler bulundurmamaktır. Tüm iletken malzemeler ve çalışanlar topraklanır, ESD'ye hassas elektroniklerde yük birikimi engellenir. Uluslararası standartlar tipik bir EPA'yı belirler, bu standartlar Uluslararası Elektroteknik Komisyonu (IEC, International Electrotechnical Commission) veya Amerikan Ulusal Standartlar Enstitüsü (ANSI, American National Standards Institute) gibi örnekler tarafından bulunur.

EPA içerisinde ESD önlemesi; uygun ESD güvenli paketlenmiş malzemeler kullanılması, çalışanların giydiği giysilerde iletken ince ipliklerin kullanılması, çalışanların vücutlarında yüksek voltaj birikmesini önlemek için iletken bilek ve ayak kelepçeleri kullanılması, zararlı elektrik yükünü çalışma alanından uzak tutmak için anti-statik halılar veya iletken zemin kaplama malzemeleri kullanılması ve nem oranı kontrolünü içerir. Çoğu yüzeyde biriken ince nem tabakası elektrik yüklerini dağıtmaya yaradığından, nemli koşullar elektrostatik yük oluşumunu önler.

İyon üreteçleri bazen, ortamın hava akımına iyonları enjekte etmek için kullanılır. İyonlaştırma sistemleri, yalıtkan veya dielektrik maddelerin yüklü yüzey bölgelerini nötrleştirmeye yardımcı olur. Sürtünme ile elektriklenmeye eğilimli iletken maddeler, indüksiyon sonucu kazara oluşabilecek yüklenmeleri önlemek için hassas cihazlardan uzak tutulmalıdır. Uçakta statik boşaltıcılar, kanatların ve diğer yüzeylerin bitiş kenarlarında kullanılır.

Birleşik devrelerin üreticileri ve kullanıcıları, ESD'den kaçınmak için bir takım önlemler almalıdır. ESD önlemesi cihazın kendisinin bir parçası olabilir veya giriş ve çıkış uçları için özel tasarım teknikleri içerebilir. Devrenin tasarımı ile birlikte harici koruma bileşenleri de kullanılabilir.

Elektronik bileşenleri ve takımlarının dielektrik doğası gereği, elektrostatik yüklenme cihazların yönetimi süresince tamamıyla önlenemez. ESD'ye hassas elektronik takımların ve bileşenlerin çoğunun imalat ve yönetimi, otomatikleştirilmiş donanımlar ile bitirilebilecek denli küçüktür. ESD önleme işlemleri bu yüzden, bileşenlerin donanım yüzeyleriyle direkt temas haline getirildiği bu süreçler ile çok önemlidir. Ayrıca, elektrostatik boşalmaya hassas bileşenlerin, ürünün kendisinin diğer iletken parçalarıyla temas ettiği anda ESD'yi önlemek önemlidir. ESD'yi önlemek için en etkili yol, çok iletken olmayan fakat statik yükü yavaşça uzaklaştırabilecek malzemeler kullanmaktır. Bu malzemeler statik dağıtıcı olarak adlandırılır ve 105 ile 1012 ohm-metre aralığında özdirence sahiptir. Otomatikleştirilmiş imalatta, ESD'ye hassas elektroniğin iletken alanlarına değecek olan malzemeler, dağıtıcı malzemeden yapılmalıdır ve bu malzeme topraklanmalıdır.

Taşıma süresince koruma

Hassas cihazlar nakliyat, kullanım ve saklama süresince korunmalıdır. Statiğin artışı ve boşalması, ambalajlama malzemelerinin yüzey direnci ve özdirenç hacminin kontrolü ile en aza indirgenebilir. Ambalajlama işlemi ayrıca, ambalajların nakliye süresince birbiriyle sürtünerek elektriklenmesini (İngilizce: triboelectric charging) en aza indirgeyecek şekilde tasarlanır ve bu, ambalaj malzemesinin elektrostatik veya elektromanyetik korumayı bünyesinde barındırması için gerekli olabilir.

Elektronik cihazlar için simülasyon ve deneme

Elektrik boşalımı

Elektronik cihazların insan temasından kaynaklanabilecek olan ESD'ye hassasiyetini test etmek için sıklıkla, özel çıkış devresi olan insan vücudu modeli (HBM, Human body model) olarak adlandırılan bir ESD simülatörü kullanılır. Direnç ile seri bağlı bir kondansatör den oluşur. Kondansatör, harici bir kaynak tarafından belirli bir yüksek voltaja şarj edilir ve yükü direnç vasıtasıyla aniden testten geçirilen cihazın (DUT, Device under test) uçlarına boşaltılır. En yaygın şekilde kullanılanı JEDEC 22-A114-B standartlarında tanımlanmıştır (100 piko farad değerinde kondansatör ve 1500 ohm değerinde direnç olarak belirtilmiştir.). MIL-STD-883 Metot 3015 ve ESD Association's ESD STM5.1 benzer diğer standartlardır. Bilgi Teknoloji Donanımlarının Avrupa Birliği (EU, Europoean Union) standartlarına uymak için, IEC/EN 61000-4-2 testi belirtmeleri kullanılır. Ürünün kalımlılığını ölçmek için; test ünitesi geometrileri, üretici belirtmeleri, test seviyeleri, boşalma oranı ve dalga biçimleri, “mağdur” üründeki boşalmanın biçimleri ve noktaları ve işlemsel ölçütleri için yönergeler ve gereklilikler belirtilmiştir.

Yüklü cihaz modeli (CDM, Charged device model) testi, cihaz kendi elektrostatik yüküne sahip olduğunda ve metal teması dolayısıyla boşaldığında cihazın direnebileceği ESD'yi belirlemek için kullanılır. Bu boşalma biçimi, ESD'nin elektronik cihazlardaki en yaygın biçimidir ve imalat sırasındaki ESD zararlarının çoğuna sebep olur. CDM boşalması temel olarak, boşalmanın parazit parametrelerine ve ambalaj bileşenin boyutuna ve biçimine fazlasıyla bağlıdır. En yaygın olarak kullanılan CDM simülasyon testi modellerinden bir tanesi JEDEC tarafından belirlenmiştir.

Diğer standartlaştırılmış ESD testi devreleri, makine modeli (MM, Machine model) ve iletim hattı titreşimidir (TLP).

Kaynakça

  1. ^ "Elektrostatik Boşalma-ESD Nedir?". Dr. Aysam Akses. 16 Kasım 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Kasım 2021. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektrik</span> elektrik yükünün varlığı ve akışı ile ilgili fiziksel olaylar

Elektrik, elektrik yüklerinin akışına dayanan bir dizi fiziksel olaya verilen isimdir. Elektrik sözcüğü Türkçeye Fransızcadan geçmiştir. Elektriğin Türkçe eş anlamlısı çıngı sözcüğüdür. Ayrıca Anadolu ağızlarında elektrik anlamında yaldırayık sözcüğü tespit edilmiştir. Elektrik, pek çok farklı şekillerde var olabilir. Örneğin, yıldırımlar, durgun elektrik, elektromanyetik indüksiyon ve elektrik akımı gibi. Ek olarak, elektriğin elektromanyetik radyasyon, radyo dalgaları gibi oluşumları olduğu bilinmektedir.

<span class="mw-page-title-main">Elektrik yükü</span> bir nesnenin elektriksel alan ile etkileşimi neticesinde ölçülebilen fiziksel özelliği

Elektrik yükü veya elektriksel yük, bir maddenin elektrik yüklü diğer bir maddeyle yakınlaştığı zaman meydana gelen kuvvetten etkilenmesine sebep olan fiziksel özelliktir. Pozitif ve Negatif olmak üzere iki tür elektriksel yük vardır. Pozitif yüklü maddeler, diğer pozitif yüklü maddeler tarafından itilirken, negatif yüklü olanlar tarafından çekilir; negatif yüklü maddeler de negatif yüklüler tarafından itilir ve pozitif olanlar tarafından çekilir. Bir cisimde negatif yükler pozitif yüklere dominantsa, negatif yüklüdür; tersi durumdaysa pozitif yüklüdür; dominantlık söz konusu değilse yüksüzdür. Uluslararası Birim Sistemi (SI) elektrik yükünü coulomb (C) olarak adlandırırken, elektrik mühendisliğinde amper-saat (Ah) olarak ve kimyada da elemanter yük (e) olarak adlandırmak mümkündür. Q sembolü genellikle yükü ifade etmek için kullanılır. Yüklü cisimlerin birbirleriyle nasıl iletişimde olduklarını anlatan çalışma klasik elektromanyetizmadır ve kuantum mekaniğinin göz ardı edilebildiği ölçüde doğrudur.

<span class="mw-page-title-main">Elektroskop</span>

Elektroskop, bir cisimde statik elektrik yükünün olup olmadığını, yükün eksi (-) veya artı (+) işaretli olduğunu tespit etmeye yarayan alet.

<span class="mw-page-title-main">Elektrik akımı</span> elektrik yükü akışı

Elektrik akımı, elektriksel akım veya cereyan, en kısa tanımıyla elektriksel yük taşıyan parçacıkların hareketidir. Bu yük genellikle elektrik devrelerindeki kabloların içerisinde hareket eden elektronlar tarafından taşınmaktadır. Ayrıca, elektrolit içerisindeki iyonlar tarafından ya da plazma içindeki hem iyonlar hem de elektronlar tarafından taşınabilmektedir.

<span class="mw-page-title-main">Elektrostatik</span> durağan elektrik yüklerinin incelenmesi

Elektrostatik, duran veya çok yavaş hareket eden elektrik yüklerini inceleyen bir bilim dalıdır.

<span class="mw-page-title-main">Elektroerozyon</span>

Elektroerozyon, iş parçasına istenilen şekli vermek için elektrik boşalmasından faydalanılan üretim yöntemi. Elektrik iletkeni malzemelere uygulananır. Metal aşındırma işlemi takım görevini yapan bir elektrot ile iş parçası arasında meydana gelen kıvılcımların yardımıyla gerçekleştirilir. Kıvılcımlar, ergime ve buharlaşma yoluyla çok küçük malzeme parçacıkları kaldırarak parça yüzeyini erozyona tabi tutar ve parça üzerinde ufak çukurlar oluşturur. EDM sırasında elektrot ile iş parçası arasındaki mesafe 0,0125 mm ile 0,05 mm arasındadır. Bu mesafe takım ve iş parçası arasında elektrik arkı oluşması için yeterlidir. Yer yer sıcaklığın 8000oC - 12000oC aralığına çıktığı proseste soğutma ve ark aralığını tıkayan aşındırılmış parçaların uzaklaştırılmasında dielektrik sıvı kullanılır. Sirkülasyon hızına bağlı olan dielektrik sıvının performansı, sirkülasyon pompası kullanımı veya benzeri metotlarla arttırılabilir. Bu metotların hassasiyeti 5-100 mikron arasında değişmektedir.

<span class="mw-page-title-main">Van de Graaff jeneratörü</span> yüksek gerilim biriktirmeye yarayan bir elektrostatik jeneratör

Van de Graaff jeneratörü hareket eden bir kayış yardımıyla içi boş bir kürede yüksek gerilim biriktirmeye yarayan bir elektrostatik jeneratördür. 1929 yılında Amerikalı fizikçi Robert Jemison Van de Graaff tarafından icat edilen bu jeneratörde potansiyel farkı 5 megavolta kadar çıkabilir. Bu araç bir üreteç ve ona paralel bağlı bir kondansatör ile çok büyük bir elektriksel direnç olarak da düşünülebilir.

Kablosuz enerji ya da kablosuz enerji transferi, insan yapımı iletken olmadan güç kaynağından elektriksel alana elektrik transferidir. Kablosuz transfer kabloların bağlantısının uygunsuz, tehlikeli ve imkânsız olduğu durumlarda kullanışlıdır. Kablosuz enerji transferindeki problem kablosuz telekomünikasyondan örneğin radyo gibi farklıdır. İkinci olarak, alınan enerjinin yayılması sadece sinyal çok az olduğunda kritik olur. Kablosuz enerji için yeterlilik çok önemli bir parametredir. Enerjinin büyük çoğunluğu üretilen kaynak tarafından alıcı ya da alıcılara sistemi ekonomik yapmak için ulaşmasında gönderildi. En yaygın kablosuz elektrik transfer şekli manyetik resonator tarafından direkt indüksiyon olarak kullanılmasıdır. Mikrodalgalar ya da lazer formunda elektromanyetik radyasyon ve doğal medya sayesinde elektriksel iletkenlik düşündüğümüz metotlardır.

<span class="mw-page-title-main">Statik elektrik</span>

Statik elektrik, bir maddenin içerisindeki ya da yüzeyindeki elektrik yüklerinin oransızlığı olarak tanımlanmaktadır. Yük, elektrik akımı ya da elektriksel deşarj tarafından uzağa hareket etmeye başlayacağı zamana kadar aynen kalır. Statik elektrik, elektrik telleri ya da diğer iletkenler boyunca akan ve enerji aktaran elektrik akımının tam aksi olarak adlandırılmaktadır.

<span class="mw-page-title-main">Yalıtkan (elektrik)</span>

Elektriksel yalıtkan, elektrik yükünün serbestçe akamadığı maddelerdir. Bu yüzden elektrik alanının etkisi altında kaldıklarında, elektrik akımını iletmeleri zordur. Mükemmel yalıtkanlar bulunmamaktadır. Ancak, cam kâğıt ve polietilen tabanlı vesaire gibi yüksek özdirence sahip bazı maddeler çok iyi elektrik yalıtkanlarıdır. Daha düşük özdirençleri olan maddeler hala elektrik kablolarında kullanılmak için yeterlidir. Kauçuk benzeri polimerler ve birçok plastik bu gruba dâhildir. Bu tür malzemeler düşükten orta dereceli gerilimleri güvenli bir şekilde yalıtılmasına hizmet eder.

<span class="mw-page-title-main">Elektriksel kırılım</span>

Elektriksel kırılım ya da dielektrik çökümü uygulanan voltaj çöküm gerilimini geçtiğinde yalıtkan maddenin direncindeki ani azalmadır. Bu durum yalıtkan maddenin bir kısmının iletken olmasıyla sonuçlanır. Elektriksel kırılım geçici(elektrostatik boşalmadaki gibi) olabildiği gibi, eğer koruyucu cihazlar yüksek güç devresindeki akımı kesmede başarısız olursa devamlı ark boşalmasına da yol açabilir.

<span class="mw-page-title-main">Elektrostatik endüksiyon</span>

Elektrostatik endüksiyon, bir cismin yakınındaki yüklerin etkilemesi sebebiyle elektriksel yükünün yeniden dağılmasıdır. Ortamda yüklü cisim bulunması sonucu izoleli iletkenin bir ucu negatif bir ucu ise pozitif yükle yüklenir. Endüksiyon, 1753 yılında İngiliz bilim insanı John Canton ve 1762 yılında İsveçli bilim insanı Profesör Johan Carl Wilcke tarafından bulunmuştur. Elektrostatik jeneratörler, Wimshurst makinesi, Van de Graff jeneratörü ve elektrofor gibi, bu prensiple çalışır. Endüksiyon sayesinde elektrostatik potansiyel (voltaj) iletken boyunca her noktada sabittir. Endüksiyon aynı zamanda balon, kâğıt veya strafor hırdavatlar gibi hafif ve yalıtkan maddelerin statik elektrik yükünü çekmesini sağlar. Elektrostatik endüksiyon, elektromanyetik endüksiyon ile karıştırılmamalıdır.

<span class="mw-page-title-main">Yüksek gerilim</span> Elektriğin yüksek birimlerde olma hali

Yüksek gerilim, genel olarak yaşayan canlılara zarar verecek yükseklikte gerilimdeki elektrik enerjisi anlamına gelir. Yüksek gerilim taşıyan gereçler ve iletkenler belirli güvenlik gereklilikleri ve prosedürlerini temin etmelidir. Bazı endüstrilerde yüksek gerilim belli bir eşiğin üstündeki gerilim anlamına gelir. Yüksek gerilim, elektrik güç dağıtımı, katot ışın tüpleri oluşturmak, X-ışınları ve parçacık demeti üretmek, arklanma kurmak, kıvılcımlanma için, fotoçoğaltıcı tüplerde ve yüksek güçlü yükseltici vakum tüplerde ve diğer endüstriyel ve bilimsel uygulamalarda kullanılır.

<span class="mw-page-title-main">Wimshurst makinesi</span>

Wimshurst etkisi makinesi, 1880-1883 yılları arasında İngiliz mucit James Wimshurst (1832-1903) tarafından, yüksek voltaj üretmesi için geliştirilmiş elektrostatik bir üretici dir.

Elektromanyetik kuramın tarihi özellikle aydınlatma alanındaki atmosferik elektrik ile ilişkilendirilmiş eski ölçümlerle başlar. İnsanlar elektrik hakkında çok az bilgiye sahipti ve bilimsel olarak bu doğa olaylarını açıklayamıyorlardı. 19. yüzyılda elektrik kuramının tarihi ve manyetizma kuramının tarihi kesişti. Elektriğin hareket halinde olduğu her yerde manyetizmanın varlığından da söz edilebileceği için elektriğin manyetizma ile birlikte ele alınması gerektiği çok açıktı. Manyetizma, manyetik indüksiyon düşüncesi geliştirilmeden tam olarak açıklanamadı. Elektrik, elektrik yük düşüncesi geliştirilmeden tam olarak açıklanmadı.

<span class="mw-page-title-main">Elektrik kıvılcımı</span>

Elektrik kıvılcımı, yeterli büyüklükteki elektriksel alanların; hava, gaz ya da gaz karışımları gibi normal yalıtkan vasıtalar aracılığıyla iyonik ve iletken kanallar yaratmasıyla oluşan, ani elektriksel boşalmadır.

<span class="mw-page-title-main">Korona deşarjı</span>

Korona deşarjı; yüksek gerilimli bir iletkenin, etrafını saran hava gibi akışkanların iyonlaşmasıyla oluşan elektriksel bir deşarjdır. Havanın elektriksel bir kırılım geçirip iletkenleşmesi ve yükün iletkenden akışkana sızmasını sağlar. Korona deşarjı, iletkenin etrafındaki elektrik alanın, havanın dielektrik dayanımını aştığı yerlerde oluşur. Genellikle nemli ve sisli havalarda görülen bu deşarj işlemi radyal olarak dışarıya mor renkli ışık halkaları emite eder. Kendiliğinden meydana gelen korona deşarjı doğal olarak eğer elektrik alanı şiddetinin limiti sonsuza gitmiyorsa yüksek voltajlı sistemlerde açığa çıkar. Genellikle yüksek voltaj taşıyan iletkenlerin havaya bitişik sivri noktalarında, mavimsi bir parıltı olarak görülür ve bir gaz deşarj lambasıyla aynı özellikte ışık yayar.

<span class="mw-page-title-main">Elektriksel özdirenç ve iletkenlik</span> Wikimedia anlam ayrımı sayfası

Elektriksel öz direnç, belirli bir malzemenin elektrik akımının akışına karşı nicelleştiren bir özelliktir. Düşük bir direnç kolaylıkla elektrik akımının akışını sağlayan bir malzeme anlamına gelir. Karşıt değeri, elektrik akımının geçiş kolaylığını ölçen elektriksel iletkenliktir. Elektriksel direnç, mekanik sürtünme ile kavramsal paralelliklere sahiptir. Elektriksel direncin SI birimi ohm, elektriksel iletkenliğin birimi ise siemens (birim) (S)'dir.

<span class="mw-page-title-main">Sürtünme ile elektriklenme</span> Temas ile elektriklenme türü

Sürtünme ile elektriklenme belli maddelerin başka maddeler ile sürtünme teması sonrası elektriksel olarak yüklü hale geldiği dokunma ile elektriklenmenin bir türüdür. Camın kürkle sürtünmesi ya da saçın taranması sürtünme ile elektriklenmeyi sağlar. Günlük hayattaki çoğu statik elektrik durumu sürtünme ile elektriklenme çeşididir. Oluşturulmuş kutupluluk ve yüklerin kuvvetliliği yüzey pürüzlüğü, sıcaklık, gerilme ve diğer özelliklere bağlı olarak maddeden maddeye değişmektedir.

Elektromanyetik kuvvetlerin insan anlayışının zaman çizelgesi olduğu elektromanyetizma zaman çizelgesi, iki bin yıl öncesine dayanmaktadır. Bu çizelge, elektromanyetizma, ilgili teoriler, teknoloji ve olayların tarihinin içinde oluşumlarını listeler.