İçeriğe atla

Elektrospinning cihazı

Kararsızlığın başlangıcını gösteren elektrospinning sürecinin bir diyagramı

Elektrospinning cihazı, elektro-imalat yöntemi ile yüksek voltajla oluşturulan yüksek elektrik alan içerisinde polimer çözeltilerinden nanolif ağ üretimi için tasarlanmış düzenek.[1][2]

Gerekli yüksek voltaj yüksek gerilim güç kaynağından 10-40 kV mertebelerinde uygun hazırlanmış polimer çözeltisine verilir. Yüksek voltajın oluşturduğu elektrik alan içerisinde yüklenen polimer çözeltisi karşı kutup olarak topraklanmış veya zıt kutup ile yüklenmiş bir metal yüzey üzerine doğru spin hareketi ile incelerek nanometre mertebelerinde lifler oluşturarak bir nanolif membran yüzey oluşumunu sağlar.[3]

Elektrospinning cihazı
Elektrospinning cihazı

Bu sistemin kompak bir şekilde bir düzenek oluşturularak kolay uygulanabilir hale getirilmesi ile bir elektrospinning cihazı yapılabilir.

Gerekli ekipmanlar

  • Yüksek voltaj (10-100 kV) güç kaynağı
  • Hassas debi (0,1-100 ml/saat) verebilecek mikropompa
  • Elektrik kaçaklarını engellemek için yalıtım malzemleri
  • Toplayıcı plaka veya silindir
  • İğne veya diğer polimer besleyici nozül
  • Havalandırma fanları
  • Işık vb diğer ekipmanlar[4]

Dış bağlantılar

Kaynakça

  1. ^ "Elektrospin Cihazları - Electrospinning | % Tekno Tıp". Tekno Tıp. 7 Mayıs 2024 tarihinde kaynağından arşivlendi. Erişim tarihi: 7 Mayıs 2024. 
  2. ^ "Elektrospinning Cihazları - ASENTEK". asentek.net. 27 Mart 2023. 7 Mayıs 2024 tarihinde kaynağından arşivlendi. Erişim tarihi: 7 Mayıs 2024. 
  3. ^ Kozanoğlu, Gün Sazak (10 Haziran 2015). Elektrospinning Yöntemiyle Nanolif Üretim Teknolojisi (Tez). Fen Bilimleri Enstitüsü. 
  4. ^ "Nano Lifler Bölüm: 2". Tubitak Tekstil Araştırma Merkezi. 2007. 7 Mayıs 2024 tarihinde kaynağından arşivlendi. Erişim tarihi: 7 Mayıs 2024. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektrik</span> elektrik yükünün varlığı ve akışı ile ilgili fiziksel olaylar

Elektrik, elektrik yüklerinin akışına dayanan bir dizi fiziksel olaya verilen isimdir. Elektrik sözcüğü Türkçeye Fransızcadan geçmiştir. Elektriğin Türkçe eş anlamlısı çıngı sözcüğüdür. Ayrıca Anadolu ağızlarında elektrik anlamında yaldırayık sözcüğü tespit edilmiştir. Elektrik, pek çok farklı şekillerde var olabilir. Örneğin, yıldırımlar, durgun elektrik, elektromanyetik indüksiyon ve elektrik akımı gibi. Ek olarak, elektriğin elektromanyetik radyasyon, radyo dalgaları gibi oluşumları olduğu bilinmektedir.

<span class="mw-page-title-main">Bakır</span> Atom numarası 29 olan, 1B geçiş grubundaki metalik element

Bakır, Cu sembollü ve 29 atom sayılı bir kimyasal elementtir. Çok yüksek termal ve elektrik iletkenliği olan yumuşak, dövülebilir ve sünek bir metaldir. Yeni açığa çıkmış saf bakır yüzeyi pembemsi-turuncu renklidir. Bakır, ısı ve elektrik iletkeni olarak yapı malzemelerinde, çeşitli metal alaşımların bileşiminde, som gümüş gibi kuyumculukta, kupronikel denizcilik donanımı ve madenî para yapımında ve konstantan yük ölçerlerde ve sıcaklık ölçen termokupllarda kullanılır.

<span class="mw-page-title-main">Volt</span> elektrikte kullanılan potansiyel farkı (gerilim) birimi

Volt, elektrikte kullanılan potansiyel farkı (gerilim) birimi. Elektromotor kuvvet birimi de volttur. Bir ohm'luk bir direnç üzerinden, bir amper'lik elektrik akımı geçmesi halinde direncin iki ucu arasındaki gerilim bir volttur.

<span class="mw-page-title-main">Transformatör</span> Elektrik-elektronik devre elemanı

Transformatör ya da kısa adıyla trafo iki veya daha fazla elektrik devresini elektromanyetik indüksiyonla birbirine bağlayan bir elektrik aletidir. Bir elektrik devresinden diğer elektrik devresine, enerjiyi elektromanyetik alan aracılığıyla nakletmektedir. Transformatörler elektrik enerjisinin belirli gücünde gerilim ve akım değerlerinde istenilen değişimi yapan makinelerdir. Transformatör, elektrik enerjisini bir elektrik devresinden başka bir devreye veya birden fazla devreye aktaran bileşendir. Transformatörün herhangi bir bobinindeki değişen akım, transformatörün çekirdeğinde değişken bir manyetik akı üretmektedir. Oluşan akım, aynı çekirdek etrafına sarılmış diğer bobinler boyunca değişen bir elektromotor kuvveti indüklemektedir. Elektrik enerjisi, iki devre arasında metalik (iletken) bir bağlantı olmadan ayrı bobinler arasında aktarılabilmektedir.

Watt, SI'de, uluslararası standart güç birimidir.

<span class="mw-page-title-main">Alternatör</span> Mekanik enerjiyi alternatif akıma çeviren aygıt.

Alternatör, mekanik enerjiyi alternatif akım biçiminde elektrik enerjisine dönüştüren bir elektrik jeneratörüdür. Maliyet ve basitlik nedenleriyle, çoğu alternatör sabit armatürle dönen manyetik alan kullanır. Bazen, sabit bir manyetik alanlı doğrusal bir alternatör veya dönen bir armatür kullanılır. Prensipte, herhangi bir AC elektrik jeneratörüne alternatör denebilir, ancak genellikle terim otomotiv ve diğer içten yanmalı motorlar tarafından tahrik edilen küçük dönen makineleri ifade eder.

Elektro-üretim, sıvılar üzerine elektrik alan kuvveti uygulayarak, onları başka bir noktaya, yapı ve boyutu değiştirerek transfer etmektir.

<span class="mw-page-title-main">Parçacık hızlandırıcı</span>

Parçacık hızlandırıcı, yüklü parçacıkları yüksek hızlara çıkarmak ve demet halinde bir arada tutmak için elektromanyetik alanları kullanan araçların genel adıdır. Büyük hızlandırıcılar parçacık fiziğinde çarpıştırıcılar olarak bilinirler. Diğer tip parçacık hızlandırıcılar, kanser hastalıklarında parçacık tedavisi, yoğun madde fiziği çalışmalarında senkrotron ışık kaynağı olmaları gibi birçok farklı uygulamalarda kullanılır. Şu an dünya çapında faaliyette olan 30.000'den fazla hızlandırıcı bulunmaktadır.

<span class="mw-page-title-main">Elektrik üreteci</span> Mekanik enerjiyi elektrik enerjisine dönüştüren aygıt

Elektrik üretiminde jeneratör, harekete dayalı gücü veya yakıta dayalı gücü harici bir devrede kullanılmak üzere elektrik gücüne dönüştüren bir cihazdır. Mekanik enerji kaynakları arasında buhar türbinleri, gaz türbinleri, su türbinleri, içten yanmalı motorlar, rüzgar türbinleri ve hatta el krankları bulunur. İlk elektromanyetik jeneratör olan Faraday diski, 1831 yılında İngiliz bilim adamı Michael Faraday tarafından icat edildi. Jeneratörler elektrik şebekeleri için neredeyse tüm gücü sağlar.

<span class="mw-page-title-main">EEPROM</span>

EEPROM, küçük boyuttaki verileri kalıcı olarak saklamak için bilgisayar ya da diğer cihazlarda kullanılan bir yongadır. Boyutu daha büyük olan sabit verileri saklamak için ise flaş bellek gibi daha ekonomik yöntemler kullanılır. EEPROM, elektrikle yazılıp silinme özelliğine sahiptir.

<span class="mw-page-title-main">Güç (elektrik)</span>

Elektriksel güç, elektrik enerjisinde elektrik devresi tarafından taşınan güç olarak tanımlanır. Gücün SI birimi watt'tır. Elektrikli cihazların birim zamanda harcadığı enerji miktarı olarak da bilinir. 1 saniyede 1 joule enerji harcayan elektrikli alet 1 watt gücündedir.

Nanolif veya nanofiber, ortalama lif çapları nanometreler mertebesinde olan yaklaşık olarak bir insan saçı telinin binde biri kadar ince liflerdir. Genel anlamda lifler söz konusu olduğunda ‘nano’ terimi, lif çapının büyüklüğü hakkında bilgi verir. Günümüzde, mevcut lif üretim teknikleriyle çapı bir mikron ve altında lif üretilemediği için, çalışmalarda “çapı bir mikron ve altındaki lifler” nanolif olarak kabul edilmektedir. Bu lifleri üretmek için geliştirilmiş en son teknolojilerden biri olan elektro-üretim yöntemidir. Birçok uygulama nanoliflerin kısa zaman içerisinde hayatın pek çok alanına gireceğini göstermektedir. Polimer esaslı nanoliflerin üretimi için en etkin ve kolay yöntem elektro-üretim (electrospinning) yöntemi olarak görülmektedir. Bunun dışında özel çekim metotları ve gaz-buharı (vapor-grown) yöntemleri ile de nanolif üretmek mümkündür.

Organik güneş pili veya organil güneş hücresi, Güneş'ten gelen ışığı aktif polimer tabakası ile absorbe eden ve doğrudan elektrik enerjisine çeviren bir cihazdır. İnorganik güneş hücrelerinden farklı olarak geniş yüzeylere kaplanabilmesi, düşük maliyetli olması ve kolay üretilebilmesinin yanı sıra organik kimyasındaki gelişmelere paralel olarak daha farklı özellikler kazandırılabilinir olması bu teknolojinin cazibelerindendir. Aktif polimer tabakası güneşten gelen ışığı absorbe edip elektron ve hol (boşluk) çiftleri (exciton) oluşturur. Yükler ayrıştıktan sonra elektronlar bir elekroda (katot), holler ise diğer elektroda (anot) doğru yol alırlar. Bu şekilde akım ve voltaj üretilir.

<span class="mw-page-title-main">Anahtarlamalı güç kaynağı</span>

Anahtarlamalı güç kaynağı olarak adlandırılan anahtarlamalı modlu güç kaynağı, elektrik gücünü verimli şekilde dönüştürmek için anahtarlama regülatörü içeren elektronik bir güç kaynağıdır. Anahtarlamalı güç kaynağı ya da İngilizce özgün adının kısaltmasıyla SMPS, 1960'lı yıllarda doğrusal güç kaynaklarının çalışma veriminin düşük olması ile kullanılmaya başlanmıştır.

Kablosuz enerji ya da kablosuz enerji transferi, insan yapımı iletken olmadan güç kaynağından elektriksel alana elektrik transferidir. Kablosuz transfer kabloların bağlantısının uygunsuz, tehlikeli ve imkânsız olduğu durumlarda kullanışlıdır. Kablosuz enerji transferindeki problem kablosuz telekomünikasyondan örneğin radyo gibi farklıdır. İkinci olarak, alınan enerjinin yayılması sadece sinyal çok az olduğunda kritik olur. Kablosuz enerji için yeterlilik çok önemli bir parametredir. Enerjinin büyük çoğunluğu üretilen kaynak tarafından alıcı ya da alıcılara sistemi ekonomik yapmak için ulaşmasında gönderildi. En yaygın kablosuz elektrik transfer şekli manyetik resonator tarafından direkt indüksiyon olarak kullanılmasıdır. Mikrodalgalar ya da lazer formunda elektromanyetik radyasyon ve doğal medya sayesinde elektriksel iletkenlik düşündüğümüz metotlardır.

<span class="mw-page-title-main">Statik elektrik</span>

Statik elektrik, bir maddenin içerisindeki ya da yüzeyindeki elektrik yüklerinin oransızlığı olarak tanımlanmaktadır. Yük, elektrik akımı ya da elektriksel deşarj tarafından uzağa hareket etmeye başlayacağı zamana kadar aynen kalır. Statik elektrik, elektrik telleri ya da diğer iletkenler boyunca akan ve enerji aktaran elektrik akımının tam aksi olarak adlandırılmaktadır.

<span class="mw-page-title-main">Yalıtkan (elektrik)</span>

Elektriksel yalıtkan, elektrik yükünün serbestçe akamadığı maddelerdir. Bu yüzden elektrik alanının etkisi altında kaldıklarında, elektrik akımını iletmeleri zordur. Mükemmel yalıtkanlar bulunmamaktadır. Ancak, cam kâğıt ve polietilen tabanlı vesaire gibi yüksek özdirence sahip bazı maddeler çok iyi elektrik yalıtkanlarıdır. Daha düşük özdirençleri olan maddeler hala elektrik kablolarında kullanılmak için yeterlidir. Kauçuk benzeri polimerler ve birçok plastik bu gruba dâhildir. Bu tür malzemeler düşükten orta dereceli gerilimleri güvenli bir şekilde yalıtılmasına hizmet eder.

<span class="mw-page-title-main">Elektriksel kırılım</span>

Elektriksel kırılım ya da dielektrik çökümü uygulanan voltaj çöküm gerilimini geçtiğinde yalıtkan maddenin direncindeki ani azalmadır. Bu durum yalıtkan maddenin bir kısmının iletken olmasıyla sonuçlanır. Elektriksel kırılım geçici(elektrostatik boşalmadaki gibi) olabildiği gibi, eğer koruyucu cihazlar yüksek güç devresindeki akımı kesmede başarısız olursa devamlı ark boşalmasına da yol açabilir.

<span class="mw-page-title-main">Süper kapasitör</span> Elektronik

Bir süper kapasitör (SC), bazen ultracapacitor, olarak bilinir ve yüksek kapasiteli bir elektrokimyakapasitorü ile kapasitans değerleri 10.000’de = 1.2 volt köprü boşluğu arasında elektrolitik kapasitörler ve piller ile şarj edilebilir. Onlar genellikle birim hacim başına 10 ila 100 kat daha fazla enerji veya elektrolitik kapasitörler daha kütle mağaza, kabul ve şarj çok daha hızlı pil vermekle kalmaz ve çok daha fazla şarj ve şarj edilebilir pillere göre daha fazla yükleme ve boşaltma yapabilir. Ancak belirli şartlar altında geleneksel pillere göre 10 kat daha büyüktür.

<span class="mw-page-title-main">Korona deşarjı</span>

Korona deşarjı; yüksek gerilimli bir iletkenin, etrafını saran hava gibi akışkanların iyonlaşmasıyla oluşan elektriksel bir deşarjdır. Havanın elektriksel bir kırılım geçirip iletkenleşmesi ve yükün iletkenden akışkana sızmasını sağlar. Korona deşarjı, iletkenin etrafındaki elektrik alanın, havanın dielektrik dayanımını aştığı yerlerde oluşur. Genellikle nemli ve sisli havalarda görülen bu deşarj işlemi radyal olarak dışarıya mor renkli ışık halkaları emite eder. Kendiliğinden meydana gelen korona deşarjı doğal olarak eğer elektrik alanı şiddetinin limiti sonsuza gitmiyorsa yüksek voltajlı sistemlerde açığa çıkar. Genellikle yüksek voltaj taşıyan iletkenlerin havaya bitişik sivri noktalarında, mavimsi bir parıltı olarak görülür ve bir gaz deşarj lambasıyla aynı özellikte ışık yayar.