İçeriğe atla

Elektronik filtre

Elektronik filtre farklı frekanslara sahip sinyallerden kimilerini geçirip, kimilerini bastıran bir devredir.

Frekans spektrumu

Elektronikte kullanılan sinyallerin frekansları birkaç kHz. den onlarca Ghz. e kadar değişir. (1 kHz = 103 Hz., 1 GHz = 109 Hz.) Teknoloji geliştikçe daha da yüksek frekansların kullanılacağı anlaşılmaktadır. Elektrik devrelerinde ise önemli olan şebeke akımının 50 Hz. lik (kimi ülkelerde 60  Hz.) frekansıdır.

Pasif filtreler

Çoğu kez devrede farklı frekanslarda birkaç sinyal bulunur ve bu sinyallerden bir bölümünü süzmek gerekir. Böylelikle bazi frekanslar iletilirken bazi frekanslar da bastırılmış olur. Süzme işlemi için ya aktif devrelerden ya da pasif devrelerden yararlanılır. Pasif devreler direnç, kondansatör ve indüktör (bobin) gibi temel devre elemanlarıyla oluşturulurlar. Aktif devreler ise, çalışması için bir güç kaynağına gerek gösteren devrelerdir. Bu gibi devrelerde transistör ya da mikroişlemci gibi devre elemanları bulunur. Ama bu tür devrelerde de, süzme işini yapan elemanlar pasif elemanlardır. Burada pasif devreler söz konusu edilecektir.

Üç temel devre elemanının özellikleri

Direnç, kondansatör ve indüktörün ortak özelliği, üzerlerinden geçen akım ile iki uçları arasındaki gerilim arasında doğrusal ilişki olmasıdır. Bu ilişkiler;

şeklinde verilir. Burada v ile gerilim, i ile akım şiddeti, C ile kapasitans (kapasitif değer, sığa), R ile direnç ve L ile de indüktans (indüktif değer, self) gösterilmektedir. MKS sisteminde birimler gerilim için volt (V), akım şiddeti için amper (A), kapasitans için farad (F), direnç için ohm (Ω) ve indüktans için de henri (H) dir. İndüktör ve kondansatöre elektronikte genellikle reaktif eleman denilir.[1]

Üç elemanın farklı frekanslar karşısında tepkileri

Şayet doğru akım söz konusuysa;

Bir entegral sabitinin olmadığı varsayımıyla, birinci denklem ilk anda kondansatör üzerinde gerilim olmadığını, bu gerilimin zamanla oluştuğunu göstermektedir. Yani, kondansatör ilk anda kısa devre gibi davranmakta, ama şarj olduktan sonra açık devre gibi davranmaktadır. Üçüncü denklem ise, indüktör üzerinde ilk anda çok yüksek bir gerilim olduğu, ama zamanla bu gerilimin sıfırlandığını göstermektedir. İndüktörün ilk anda açık devre olduğu, fakat daha sonra kısa devre haline geldiği söylenebilir.

Şayet dalgalı (alternatif) akım söz konusuysa, iki uç durum incelenebilir;

Frekansının yüksek oluşu halinde, kısa periyotlarda kondansatörün şarj edilmesi için gerekli zaman olmayacağından, kondansatör kısa devre gibi davranmaktadır. Buna karşılık, frekans düştüğü zaman, kondansatör her periyotta şarj olabileceği için, açık devre gibi davranmaktadır.

İndüktörde ise bunun tersi söz konusudur. İndüktör yüksek frekanslı sinyallerde açık devre gibi davranmakta ama alçak frekanslarda kısa devre gibi haline gelmektedir.

Direncin ise frekansa bağlı olarak, böyle bir davranış farklılığı yoktur.

Zaman sabiti

Alçak ve yüksek frekans tamlamalarını nicel hale getirmek için, alçak ve yüksek frekanslar arasındaki sınırı çizmek gerekir. Bu sınıra kritik frekans denilir. Kritik frekanstaki bir sinyalin periyoduna da zaman sabiti denilir.

Sadece iki pasif elemanla üretilmiş bir devrenin zaman sabiti şu şekilde verilir:

a. Şayet devre kondansatör ve direnç ile oluşturulmuşsa,

b. Şayet devre direnç ve indüktörden oluşmuşsa,

c. Şayet devre indüktör ve kondansatörden oluşmuşsa,

Süzdükleri frekanslara göre filtre tipleri

  • Şayet filtre alçak frekanslı sinyalleri süzüyorsa, Yüksek geçiren filtredir. (high pass filter, HPF)
  • Şayet filtre yüksek frekanslı sinyalleri süzüyorsa, Alçak geçiren filtredir. (low pass filter, LPF)
  • Şayet filtre belli bir frekans bölgesindeki sinyalleri süzüyorsa, Bant söndüren filtredir. (band stop, notch)
  • Şayet filtre belli bir frekans bölgesi dışındaki sinyalleri süzüyorsa, Bant geçiren filtredir. (band pass filter, BPF)

Tek kutuplu filtreler

En basit filtreler bir direnç ve bir reaktif eleman kullanılarak yapılan tek kutuplu filtrelerdir. Özellikle RC filtreler gerek alçak geçiren ve gerekse yüksek geçiren filtre olarak yaygın olarak kullanılır. Kondansatörün yüksek frekansta kısa devre gibi, alçak frekansta ise açık devre gibi davrandığı göz önüne alınırsa, kondansatörün paralel ya da seri kolda yer almasının filtrenin özelliklerini ortaya koyduğu da görülür.

Şayet kondansatör paralel kolda ise, yüksek frekanslı sinyaller topraklanır, yani bastırılmış olur. Alçak frekanslı sinyaller ise kondansatörün varlığından etkilenmezler. Bu alçak geçiren filtredir.

Kondansatör seri kolda ise, alçak frekanslı sinyaller açık devre olan kondansatörden geçemezken, yüksek frekanslı sinyaller kısa devre olan kondansatörden geçerler.Bu da yüksek geçiren filtredir.

Tek kutuplu filtreler düşük güçlü devrelerde çok yaygın olmakla birlikte, direnç üzerinde harcanan enerjinin sistem verimliliğini düşürmesi sebebiyle, yüksek güçlü devrelerde kullanılmazlar. Yüksek güçlü devrelerde direnç yerine indüktör tercih edilir.

Üç elemanlı (T ve П tipi ) filtreler

T tipi filtre. (Yüksek geçiren filtre)
П tipi filtre. (Alçak geçiren filtre)

Üç elemanlı filtrelerde aynı tür iki elemanla farklı tür bir eleman kullanılır. T tipi filtrede aynı tür iki eleman seri kolda, П tipi filtrede ise paralel kolda yer alırlar. Paralel kolda kondansatör alçak geçiren filtre, paralel kolda indüktör ise yüksek geçiren filtredir.

Sol ve aşağıdaki şemalar indüktör ve kondansatör kullanan üç elemanlı filtrelerin şamalarıdır. Soldaki devre şaması T tipi bir filtreye aittir. Burada örnek olarak bir yüksek geçiren filtre gösterilmiştir. Sağdaki devre şaması ise П tipi bir filtreye aittir. Burada da örnek olarak bir alçak geçiren filtre gösterilmiştir. (Ancak tersi de olabilir. Yani, kondansatör ve indüktörlerin yer değiştirmesi halinde, soldaki şama alçak geçiren, sağdaki şama ise yüksek geçiren filtre haline gelir.)

Bant geçiren ve bant söndüren filtreler

Bant geçiren filtre için alçak ve yüksek geçiren iki filtre seri olarak bağlanır. Band söndüren filtre ise alçak ve yüksek geçiren filtrelerin paralellenerek seri kola bağlanması ile elde edilir. Bant geçiren filtre için alçak geçiren filtre zaman sabiti yüksek geçiren filtre zaman sabitinden yüksek olmalı, bant söndüren filtrede ise alçak geçiren filtre zaman sabiti, yüksek geçiren filtre zaman sabitinden düşük olmalıdır.

Ayrıca bakınız

Kaynakça

  1. ^ "Bag Filter". Titan Filter (Endonezce). 4 Aralık 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 24 Ocak 2022. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kondansatör</span> Ani yük boşalması amacıyla kullanılan devre elemanı

Kondansatör ya da sığaç veya yoğunlaç, elektronların kutuplanıp elektriksel yükü elektrik alanın içerisinde depolayabilme özelliklerinden faydalanılarak bir yalıtkan malzemenin iki metal tabaka arasına yerleştirilmesiyle oluşturulan temel elektrik ve elektronik devre elemanı. Piyasada kapasite, kapasitör, sığaç gibi isimlerle anılan kondansatörler, 18. yüzyılda icat edilip geliştirilmeye başlanmış ve günümüzde teknolojinin ilerlemesinde büyük önemi olan elektrik-elektronik dallarının en vazgeçilmez unsurlarından biri olmuştur. Elektrik yükü depolama, reaktif güç kontrolü, bilgi kaybı engelleme, AC/DC arasında dönüşüm yapmada kullanılır ve tüm entegre elektronik devrelerin vazgeçilmez elemanıdır. Kondansatörlerin karakteristikleri olarak;

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

<span class="mw-page-title-main">İndüktans</span>

İndüktans elektromanyetizma ve elektronikte bir indüktörün manyetik alan içerisinde enerji depolama kapasitesidir. İndüktörler, bir devrede akımın değişimiyle orantılı olarak karşı voltaj üretirler. Bu özelliğe, onu karşılıklı indüktanstan ayırmak için, aynı zamanda öz indüksiyon da denir. Karşılıklı indüktans, bir devredeki indüklenen voltajın başka bir devredeki akımın zamana göre değişiminin etkisiyle oluşur.

<span class="mw-page-title-main">Genlik modülasyonu</span>

Genlik modülasyonu İletişim teknolojisinde (yayıncılıkta) kullanılan bir modülasyon türüdür. Uluslararası literatürde AM kısaltmasıyla gösterilir. Dilimizde ise, zaman zaman GM kısaltması kullanılmaktadır. Bu modülasyon türü 1906 yılında ilk defa Kanadalı mühendis Reginald Fessenden tarafından (1866-1932) geliştirilmiştir.

Önvurgu ses yayıncılığında sinyal gürültü oranını artırmak amacıyla kullanılan bir tekniktir.

Vakum tüpü ya da elektron tüpü, elektronik devrelerde kullanılan bir grup devre elemanıdır. Tüplerin pek çok cinsi vardır. Yirminci yüzyılın ilk yarısında bütün elektronik devrelerde kullanılmışlarsa da, yarı iletken teknolojisinin gelişmesi sonucunda kullanım alanları daralmıştır.

<span class="mw-page-title-main">Frekans modülasyonu</span> frekans modülasyonu, İletişim teknolojisinde (yayıncılıkta) kullanılan bir modülasyon türü

Frekans modülasyonu, İletişim teknolojisinde (yayıncılıkta) kullanılan bir modülasyon türüdür. FM kısaltmasıyla gösterilir. Bu modülasyon türü 1933 yılında Amerikalı mühendis Edwin Howard Armstrong (1890-1954) tarafından geliştirilmiştir.

<span class="mw-page-title-main">Ara frekans</span>

Ara frekans telekomünikasyonda verici ve alıcı cihazlarında kullanılan bir sinyaldir. Bu sinyalin kullanıldığı cihazlar teknolojide süperheterodin (superheterodyne) olarak tanımlanırlar.

Mikser Elektronikte, özellikle yayıncılıkta kullanılan ve sinyal frekansını değiştiren bir devredir.

Empedans uygunluğu elektronikte maksimum güç transferi için gereken kaynak ve yük empedansları arsındaki ilişkidir. Fizikte hemen hemen daima üretilen gücün yüke en yüksek verim ile aktarılması yani maksimum güç transferi yapılması hedeflenir. Elektronik devrelerde maksimum güç transferi için, yük empedansı kaynağa göre ayarlanır.

Radyo frekansı yayıncılıkta bir bilgi sinyali ile modüle edilmiş olan taşıyıcı sinyal anlamına gelir. Ancak, bu isim zamanla modüle edilsin, edilmesin, yüksek frekans anlamına da kullanılmaya başlanmıştır.

<span class="mw-page-title-main">Anahtarlamalı güç kaynağı</span>

Anahtarlamalı güç kaynağı olarak adlandırılan anahtarlamalı modlu güç kaynağı, elektrik gücünü verimli şekilde dönüştürmek için anahtarlama regülatörü içeren elektronik bir güç kaynağıdır. Anahtarlamalı güç kaynağı ya da İngilizce özgün adının kısaltmasıyla SMPS, 1960'lı yıllarda doğrusal güç kaynaklarının çalışma veriminin düşük olması ile kullanılmaya başlanmıştır.

Admittans elektrik mühendisliğinde karmaşık iletkenlik anlamına gelir. Admittans ile empedans çarpımı 1 dir. Admittans Y ile gösterilir. Birimi MKS sisteminde siemens (S)'dir. Kimi eski kitaplarda S yerine mho birimi de kullanılır.

Kalite faktörü, fiziğin çeşitli dallarında osilasyon yapan sistemlerde osilasyonun verimini belirtmek için kullanılan bir terim.

<span class="mw-page-title-main">Koaksiyel kablo</span> televizyon ve uydu iletişim sistemlerinde kullanılan kablo türü

Koaksiyel kablo radyo frekansta kullanılan bir kablo türüdür. Bu kablonun kesit alanı iç içe dört maddeden meydana gelir. En içte canlı hat, yani sinyali taşıyan hat vardır. Bu uç dielektrik sabiti yüksek bir yalıtkan ile çevrelenmiştir. Yalıtkanın çevresinde iletkenlerden oluşan bir örgü vardır. Bu örgü topraklanmıştır. En dışta ise koruyucu kılıf yer alır. Bu yapı koaksiyel kabloların kendi kalınlığındaki diğer kablolara göre daha elastiki olmalarını sağlar.

<span class="mw-page-title-main">Rezonans (elektrik)</span>

Elektrik rezonans kondansatör ve indüktör gibi devre elemanları olan bir devrede maksimum enerji transferinin yapılabildiği durumdur.

Seri ve paralel devreler elektrik mühendisliğinde devre elemanlarının bağlanış şekillerini ifade eder. Seri devrelerde devre elemanları aynı hat üzerinde her elemanın çıkışı bir sonrakinin girişine bağlanacak şekildedir. Bütün elemanlar üzerinde aynı akım akar. Fakat devre elemanları üzerindeki gerilim farklı olabilir. Paralel devrelerde ise bütün elemanların girişleri de çıkışları da ortaktır. Bütün elemanların üzerindeki gerilim eşittir. Buna karşılık devre elemanları üzerinde akan akım farklı olabilir.

Zaman sabiti matematikte ve fizikte genliği zamanla asimptotik olarak artan veya azalan fonksiyonların genliğinin artış veya azalış hızını gösteren bir sabittir. ile gösterilir.

<span class="mw-page-title-main">Geçirim bandı</span>

Geçirim bandı elektronikte bir cihazın frekans spektrumunda kullandığı frekans bölgesidir. Bu bölge genellikle elektronik filtrelerle belirlenir. Geçirim bandını birimleri hertz (Hz) ya da üst katlarıdır. Geçirim bandı kavramı optikte de kullanılır. Ancak optikte geleneksel olarak dalga boyu birimleri kullanıldığı için optik geçirim bandı birimleri de saniyenin askatları veya ångström birimidir.

Alçak geçiren filtre, seçilen bir kesme frekansından daha düşük bir frekansa sahip sinyalleri ileten ve kesme frekansından daha yüksek frekanslı sinyalleri zayıflatan bir filtredir. Filtrenin tam frekans tepkisi, filtre tasarımına bağlıdır. Filtre bazen ses uygulamalarında yüksek kesimli filtre veya tiz kesilmiş filtre olarak da adlandırılır. Alçak geçiren filtre, yüksek geçiren bir filtrenin tamamlayıcısıdır.