İçeriğe atla

Elektron kristalografisi

Elektron kristalografisi, bir transmisyon elektron mikroskobu kullanarak katılardaki atomların düzenini belirleme yöntemidir.

X-ışını kristalografisi ile karşılaştırma

Hem inorganik, organik hem de membran proteinleri gibi çok küçük kristallerin (<0.1 mikrometre) çalışmaları için X ışını kristalografisini tamamlayabilir ve bu işlem için gereken büyük 3 boyutlu kristalleri kolayca oluşturamaz. Protein yapıları genellikle ya 2 boyutlu kristallerden (sheet'ler veya sarmallar), viral kapsidler gibi polihedronlardan ya da dağılmış ayrı proteinlerden belirlenir. Elektronlar bu durumlarda kullanılabilirken, X ışınları kullanılamaz çünkü elektronlar atomlarla X ışınlarından daha güçlü etkileşime girer. Böylelikle, X-ışınları 2 boyutlu ince bir kristalde önemli ölçüde kırınmadan geçerken, elektronlar bir görüntü oluşturmak için kullanılabilir. Tersine, elektronlar ve protonlar arasındaki güçlü etkileşim, kalın (örn. 3 boyutlu>1 mikrometre) kristalleri yalnızca kısa mesafelere nüfuz eden elektronlara karşı geçirimsiz hale getirir.

X-ışını kristalografisindeki ana zorluklardan biri, kırınım modelindeki fazları belirlemektir. X-ışını lenslerinin karmaşıklığından dolayı, kırılan kristalin bir görüntüsünü oluşturmak zordur ve bu nedenle faz bilgisi kaybolur. Neyse ki, elektron mikroskopları atomik yapıyı gerçek uzayda çözebilir ve kristalografik yapı faktör faz bilgisi, bir görüntünün Fourier dönüşümünden deneysel olarak belirlenebilir. Atomik çözünürlüklü bir görüntünün Fourier dönüşümü, bir kristalin simetrisini ve aralığını yansıtan karşılıklı kafes noktalarıyla bir kırınım modeline benzer, ancak farklıdır.[1] Aaron Klug, faz bilgisinin doğrudan 1968'de bir bilgisayara taranmış bir elektron mikroskobu görüntüsünün Fourier dönüşümünden okunabileceğini ilk fark eden oldu. Bunun için ve virüs yapıları ile transfer-RNA üzerine yaptığı çalışmalar için Klug, 1982'de Nobel Kimya Ödülü'nü aldı.

Radyasyon hasarı

X-ışını kristalografisi ve elektron kristalografisinin ortak bir problemi, radyasyon hasarıdır, özellikle organik moleküller ve proteinler görüntülendikçe zarar görürler ve elde edilebilecek çözünürlüğü sınırlarlar. Bu, radyasyon hasarının çok daha az sayıda atoma odaklandığı elektron kristalografisi ortamında özellikle zahmetlidir. Radyasyon hasarını sınırlamak için kullanılan bir teknik, örneklerin kriyofiksasyona uğradığı ve görüntülemenin sıvı nitrojen veya hatta sıvı helyum sıcaklıklarında gerçekleştiği elektron kriyomikroskopisidir. Bu problem nedeniyle, X-ışını kristalografisi, özellikle radyasyon hasarına karşı savunmasız olan proteinlerin yapısını belirlemede çok daha başarılı olmuştur. Radyasyon hasarı, donmuş hidratlı bir durumda MicroED[2][3] ince 3D kristalleri kullanılarak yakın zamanda araştırıldı.

Elektron kristalografisi ile belirlenen protein yapıları

Atomik çözünürlüğe ulaşan ilk elektron kristalografik protein yapısı, 1990 yılında Tıbbi Araştırma Konseyi Moleküler Biyoloji Laboratuvarı'nda Richard Henderson ve çalışma arkadaşları tarafından belirlenen bakteriyorodopsin idi.[4] Bununla birlikte, daha 1975'te Unwin ve Henderson, ilk membran protein yapısını orta çözünürlükte (7 Ångström) belirlemişlerdi ve ilk kez bir membran proteininin iç yapısını, alfa helisleri membranın düzlemine dik olarak duruyorlardı. O zamandan beri, ışık toplama kompleksi,[5] nikotinik asetilkolin reseptörü[6] ve bakteri kamçısı dahil olmak üzere elektron kristalografisi ile birçok başka yüksek çözünürlüklü yapı belirlendi.[7] 2D kristallerin elektron kristalografisi ile çözülen en yüksek çözünürlüklü protein yapısı aquaporin-0 su kanalına aittir.[8] 2013'te elektron kristalografisi, mikrokristal elektron kırınımı veya MicroED adı verilen yeni bir yöntemle 3B kristallere genişletildi.[2]

Fourier dönüşümü eklenmiş inorganik tantalum oksidin elektron mikroskobu görüntüsü. Görünümün üst ince bölgeden daha kalın alt bölgeye doğru nasıl değiştiğine dikkat edilir. Bu bileşiğin birim hücresi yaklaşık 15'e 25 Ångström'dür. Simetrinin hesaba katıldığı görüntü işleme sonucunun içinde şeklin merkezinde ana hatlarıyla belirtilmiştir. Siyah noktalar, tüm tantal atomlarını açıkça gösteriyor. Kırınım, 15 Å yönü boyunca 6 sıraya ve dikey yönde 10 sıraya kadar uzanır. Böylece EM görüntünün çözünürlüğü 2,5 Å'dur (15/6 veya 25/10). Bu hesaplanan Fourier dönüşümü hem genlikleri hem de fazları içerir (görüntülenmedi).
Yukarıda gösterilen aynı inorganik tantalum oksit kristalinin elektron kırınım modeli. Burada, yukarıdaki EM görüntüsünden hesaplanan difraktogramdan çok daha fazla kırınım noktası olduğuna dikkat edin. Kırınım, 15 Å yönü boyunca 12 sıraya ve dikey yönde 20 sıraya kadar uzanır. Bu nedenle ED örüntüsünün çözünürlüğü 1.25 Å'dur (15/12 veya 25/20). ED desenleri faz bilgisi içermez, ancak kırınım noktalarının yoğunlukları arasındaki açık farklar kristal yapı belirlemede kullanılabilir.

İnorganik malzemelere uygulama

Yüksek çözünürlüklü elektron mikroskobu (HREM) görüntüleri kullanılarak inorganik kristaller üzerindeki elektron kristalografik çalışmaları ilk olarak 1978'de[9] Aaron Klug ve 1984'te Sven Hovmöller ve çalışma arkadaşları tarafından gerçekleştirildi.[10] HREM görüntüleri, yapı analizi için kristalin kenarına yakın çok ince bölgelerin seçilmesine (bilgisayar yazılımı ile) izin verdikleri için kullanıldı. Kristalin daha kalın kısımlarında çıkış dalgası işlevi (yansıtılan atom sütunlarının yoğunluğu ve konumu hakkında bilgi taşır) artık yansıtılan kristal yapıyla doğrusal olarak ilişkili olmadığından, bu çok önemlidir. Dahası, HREM görüntüleri sadece artan kristal kalınlığıyla görünümlerini değiştirmekle kalmaz, aynı zamanda objektif lensin bulanıklaştırma f'nin seçilen ayarına da çok duyarlıdır. Bu karmaşıklıkla başa çıkmak için Michael O'Keefe, 1970'lerin başında HREM görüntülerinde gözlemlenen kontrast değişikliklerini yorumlamaya izin veren görüntü simülasyon yazılımı geliştirmeye başladı.[11]

İnorganik bileşiklerin elektron mikroskobu alanında ciddi bir anlaşmazlık vardı; bazıları "faz bilgisinin EM görüntülerinde mevcut olduğunu" iddia ederken diğerleri "faz bilgisinin EM görüntülerinde kaybolduğu" şeklinde zıt görüşe sahiptir. Bu zıt görüşlerin nedeni, fizikçiler ve kristalograflardan oluşan iki toplulukta "faz" kelimesinin farklı anlamlarla kullanılmış olmasıdır. Fizikçiler daha çok "elektron dalga fazı" ile ilgileniyorlar - elektronların maruz kalması sırasında örnekte hareket eden bir dalganın fazı. Bu dalganın dalga boyu yaklaşık 0.02-0.03 Ångström'dür (elektron mikroskobunun hızlanan voltajına bağlı olarak). Onun fazı, kırılmamış direkt elektron ışınının fazıyla ilgilidir. Öte yandan kristalograflar, basitçe "faz" dedikleri zaman "kristalografik yapı faktör fazı" anlamına gelir. Bu aşama, kristaldeki durağan potansiyel dalgalarının aşamasıdır (X-ışını kristalografisinde ölçülen elektron yoğunluğuna çok benzer). Bu dalgaların her biri, düşük/yüksek potansiyelli Bragg düzlemleri arasındaki mesafe için d-değeri olarak adlandırılan kendi özel dalga boyuna sahiptir. Bu d-değerleri, birim hücre boyutlarından elektron mikroskobunun çözünürlük sınırına, yani tipik olarak 10 veya 20 Ångströms'den 1 veya 2 Ångströms'e kadar değişir. Aşamaları, kristalin simetri elemanlarıyla ilişkili olarak tanımlanan kristaldeki sabit bir noktayla ilişkilidir. Kristalografik fazlar kristalin bir özelliğidir, dolayısıyla elektron mikroskobunun dışında da bulunurlar. Mikroskop kapatılırsa elektron dalgaları kaybolur. Bir kristal yapının belirlenebilmesi için kristalografik yapı faktörlerinin bilinmesi ancak elektron dalga fazlarının bilinmemesi gerekir. Fazların elektron dalgasının fazlarıyla (kristalografik yapı faktörü) nasıl bağlantılı olduğu daha ayrıntılı bir tartışmada bulunabilir.[12]

Tıpkı proteinlerde olduğu gibi, inorganik kristallerin atomik yapılarını da elektron kristalografisi ile belirlemek mümkün olmuştur. Daha basit yapı için, üç dikey görünüşün kullanılması yeterlidir, ancak daha karmaşık yapılar için, on veya daha fazla farklı köşegen aşağıya projeksiyonlar da gerekli olabilir.

Elektron mikroskobu görüntülerine ek olarak, kristal yapı tayini için elektron kırınım (ED) modellerini kullanmak da mümkündür.[13][14] Yansımalar (yarı kinematik kırınım koşulları) arasındaki yapı ile ilgili yoğunluk farklılıklarının çoğunu korumak için bu tür ED modellerini en ince alanlardan kaydetmek için azami özen gösterilmelidir. X-ışını kırınım modellerinde olduğu gibi, önemli kristalografik yapı faktör fazları elektron kırınım modellerinde kaybolur ve doğrudan yöntemler, maksimum olasılık (son zamanlarda) veya yük çevirme yöntemi gibi özel kristalografik yöntemlerle ortaya çıkarılmalıdır. Öte yandan, inorganik kristallerin ED modelleri genellikle 1 Ångström'ün çok altında yüksek bir çözünürlüğe (yüksek Miller indeksli düzlemler arası boşluklar) sahiptir. Bu, en iyi elektron mikroskoplarının nokta çözünürlüğü ile karşılaştırılabilir. Uygun koşullar altında, tam kristal yapıyı belirlemek için tek bir yönelimden ED modellerini kullanmak mümkündür.[15] Alternatif olarak, kristal yapıyı iyileştirmek için ED'den gelen yoğunlukları ve çözme için HRTEM görüntülerini kullanan bir hibrit yaklaşım kullanılabilir.[16][17]

ED tarafından yapı analizi için son gelişmeler, elektron kırınım modellerini kaydetmek için Vincent-Midgley presesyon tekniğinin tanıtılmasıyla gerçekleştirildi.[18] Bu şekilde elde edilen yoğunluklar genellikle kinematik yoğunluklara çok daha yakındır, böylece geleneksel (seçili alan) elektron kırınım verileri işlenirken aralık dışı olan yapılar bile belirlenebilir.[19][20]

Elektron kristalografisi ile belirlenen kristal yapılar, yoğunluk fonksiyonel teorisi (DFT) dahilinde birinci prensip hesaplamaları kullanılarak kaliteleri kontrol edilebilir. Bu yaklaşım ilk kez, sırasıyla yalnızca HRTEM ve ED tarafından erişilebilen birkaç metal açısından zengin yapının doğrulanması için uygulandı.[21][22]

Son zamanlarda, X-ışını toz kırınımı ile birleştirilen elektron kristalografisi ile iki çok karmaşık zeolit yapısı belirlenmiştir.[23][24] Bunlar, X-ışını kristalografisi ile belirlenen en karmaşık zeolit yapılardan daha karmaşıktır.

Kaynakça

  1. ^ R Hovden; Y Jiang; HL Xin; LF Kourkoutis (2015). "Periodic Artifact Reduction in Fourier Transforms of Full Field Atomic Resolution Images". Microscopy and Microanalysis. 21 (2). ss. 436-441. Bibcode:2015MiMic..21..436H. doi:10.1017/S1431927614014639. PMID 25597865. 
  2. ^ a b Nannenga, Brent L; Shi, Dan; Leslie, Andrew G W; Gonen, Tamir (3 Ağustos 2014). "High-resolution structure determination by continuous-rotation data collection in MicroED". Nature Methods. 11 (9). ss. 927-930. doi:10.1038/nmeth.3043. ISSN 1548-7091. PMC 4149488 $2. PMID 25086503. 
  3. ^ Hattne, Johan; Shi, Dan; Glynn, Calina; Zee, Chih-Te; Gallagher-Jones, Marcus; Martynowycz, Michael W.; Rodriguez, Jose A.; Gonen, Tamir (2018). "Analysis of Global and Site-Specific Radiation Damage in Cryo-EM". Structure. 26 (5). ss. 759-766.e4. doi:10.1016/j.str.2018.03.021. ISSN 0969-2126. PMC 6333475 $2. PMID 29706530. 
  4. ^ Henderson, R.; Baldwin, J.M.; Ceska, T.A.; Zemlin, F; Beckmann, E.; Downing, K.H. (Haziran 1990). "Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy". J Mol Biol. 213 (4). ss. 899-929. doi:10.1016/S0022-2836(05)80271-2. PMID 2359127. 
  5. ^ Kühlbrandt, Werner; Wang, Da Neng; Fujiyoshi, Yoshinori (Şubat 1994). "Atomic model of plant light-harvesting complex by electron crystallography". Nature. 367 (6464). ss. 614-21. Bibcode:1994Natur.367..614K. doi:10.1038/367614a0. PMID 8107845. 
  6. ^ Miyazawa, Atsuo; Fujiyoshi, Yoshinori; Unwin, Nigel (Haziran 2003). "Structure and gating mechanism of the acetylcholine receptor pore". Nature. 423 (6943). ss. 949-55. Bibcode:2003Natur.423..949M. doi:10.1038/nature01748. PMID 12827192. 
  7. ^ Yonekura, Koji; Maki-Yonekura, Saori; Namba, Keiichi (Ağustos 2003). "Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy". Nature. 424 (6949). ss. 643-50. Bibcode:2003Natur.424..643Y. doi:10.1038/nature01830. PMID 12904785. 
  8. ^ Gonen, Tamir; Cheng, Yifan; Sliz, Piotr; Hiroaki, Yoko; Fujiyoshi, Yoshinori; Harrison, Stephen C.; Walz, Thomas (2005). "Lipid–protein interactions in double-layered two-dimensional AQP0 crystals". Nature. 438 (7068). ss. 633-638. Bibcode:2005Natur.438..633G. doi:10.1038/nature04321. ISSN 0028-0836. PMC 1350984 $2. PMID 16319884. 
  9. ^ Klug, A (1978/79) Image Analysis and Reconstruction in the Electron Microscopy of Biological Macromolecules Chemica Scripta vol 14, p. 245-256.
  10. ^ Hovmöller, Sven; Sjögren, Agneta; Farrants, George; Sundberg, Margareta; Marinder, Bengt-Olov (1984). "Accurate atomic positions from electron microscopy". Nature. 311 (5983). s. 238. Bibcode:1984Natur.311..238H. doi:10.1038/311238a0. 
  11. ^ O'Keefe, M. A.; Buseck, P. R.; Iijima, S. (1978). "Computed crystal structure images for high resolution electron microscopy". Nature. 274 (5669). s. 322. Bibcode:1978Natur.274..322O. doi:10.1038/274322a0. 
  12. ^ Zou, X (1999). "On the phase problem in electron microscopy: the relationship between structure factors, exit waves, and HREM images". Microscopy Research and Technique. 46 (3). ss. 202-19. doi:10.1002/(SICI)1097-0029(19990801)46:3<202::AID-JEMT4>3.0.CO;2-8. PMID 10420175. 
  13. ^ B. K. Vainshtein (1964), Structure Analysis by Electron Diffraction, Pergamon Press Oxford
  14. ^ D. L. Dorset (1995), Structural Electron Crystallography, Plenum Publishing Corporation 0-306-45049-6
  15. ^ Weirich, TE; Zou, X; Ramlau, R; Simon, A; Cascarano, GL; Giacovazzo, C; Hovmöller, S (2000). "Structures of nanometre-size crystals determined from selected-area electron diffraction data". Acta Crystallographica A. 56 (Pt 1). ss. 29-35. doi:10.1107/S0108767399009605. PMID 10874414. 
  16. ^ Zandbergen, H. W. (1997). "Structure Determination of Mg5Si6 Particles in Al by Dynamic Electron Diffraction Studies". Science. 277 (5330). ss. 1221-1225. doi:10.1126/science.277.5330.1221. 
  17. ^ Weirich, Thomas E.; Ramlau, Reiner; Simon, Arndt; Hovmöller, Sven; Zou, Xiaodong (1996). "A crystal structure determined with 0.02 Å accuracy by electron microscopy". Nature. 382 (6587). s. 144. Bibcode:1996Natur.382..144W. doi:10.1038/382144a0. 
  18. ^ "Precession Electron Diffraction". 24 Eylül 2018 tarihinde kaynağından arşivlendi. Erişim tarihi: 17 Kasım 2020. 
  19. ^ Gemmi, M; Zou, X; Hovmöller, S; Migliori, A; Vennström, M; Andersson, Y (2003). "Structure of Ti2P solved by three-dimensional electron diffraction data collected with the precession technique and high-resolution electron microscopy". Acta Crystallographica. 59 (Pt 2). ss. 117-26. doi:10.1107/S0108767302022559. PMID 12604849. 
  20. ^ Weirich, T; Portillo, J; Cox, G; Hibst, H; Nicolopoulos, S (2006). "Ab initio determination of the framework structure of the heavy-metal oxide CsxNb2.54W2.46O14 from 100kV precession electron diffraction data". Ultramicroscopy. 106 (3). ss. 164-75. doi:10.1016/j.ultramic.2005.07.002. PMID 16137828. 
  21. ^ Albe, K; Weirich, TE (2003). "Structure and stability of alpha- and beta-Ti2Se. Electron diffraction versus density-functional theory calculations". Acta Crystallographica A. 59 (Pt 1). ss. 18-21. doi:10.1107/S0108767302018275. PMID 12496457. 
  22. ^ Weirich, TE (2004). "First-principles calculations as a tool for structure validation in electron crystallography". Acta Crystallographica A. 60 (Pt 1). ss. 75-81. Bibcode:2004AcCrA..60...75W. doi:10.1107/S0108767303025042. PMID 14691330. 
  23. ^ Gramm, Fabian; Baerlocher, Christian; McCusker, Lynne B.; Warrender, Stewart J.; Wright, Paul A.; Han, Bada; Hong, Suk Bong; Liu, Zheng; Ohsuna, Tetsu; Terasaki, Osamu (2006). "Complex zeolite structure solved by combining powder diffraction and electron microscopy". Nature. 444 (7115). ss. 79-81. Bibcode:2006Natur.444...79G. doi:10.1038/nature05200. PMID 17080087. 
  24. ^ Baerlocher, C.; Gramm, F.; Massuger, L.; McCusker, L. B.; He, Z.; Hovmoller, S.; Zou, X. (2007). "Structure of the Polycrystalline Zeolite Catalyst IM-5 Solved by Enhanced Charge Flipping". Science. 315 (5815). ss. 1113-6. Bibcode:2007Sci...315.1113B. doi:10.1126/science.1137920. PMID 17322057. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektron</span> Temel elektrik yüküne sahip atomaltı parçacık

Elektron, eksi bir temel elektrik yüküne sahip bir atomaltı parçacıktır. Lepton parçacık ailesinin ilk nesline aittir ve bileşenleri ya da bilinen bir alt yapıları olmadığından genellikle temel parçacıklar olarak düşünülürler. Kütleleri, protonların yaklaşık olarak 1/1836'sı kadardır. Kuantum mekaniği özellikleri arasında, indirgenmiş Planck sabiti (ħ) biriminde ifade edilen, yarım tam sayı değerinde içsel bir açısal momentum (spin) vardır. Fermiyon olmasından ötürü, Pauli dışarlama ilkesi gereğince iki elektron aynı kuantum durumunda bulunamaz. Temel parçacıkların tamamı gibi hem parçacık hem dalga özelliklerini gösterir ve bu sayede diğer parçacıklarla çarpışabilir ya da kırınabilirler.

<span class="mw-page-title-main">Biyofizik</span> Fiziksel bilimlerdeki yöntemleri kullanarak biyolojik sistemlerin incelenmesi

Biyofizik, biyolojik olayları incelemek için fizikte geleneksel olarak kullanılan yaklaşım ve yöntemleri uygulayan disiplinler arası bir bilimdir. Biyofizik, moleküler seviyeden organizma ve popülasyon seviyesine kadar tüm biyolojik organizasyon ölçeklerini kapsar. Biyofiziksel araştırmalar biyokimya, moleküler biyoloji, fizikokimya, fizyoloji, nanoteknoloji, biyomühendislik, hesaplamalı biyoloji, biyomekanik, gelişim biyolojisi ve sistem biyolojisi ile önemli ölçüde örtüşmektedir.

<span class="mw-page-title-main">Mikroskop</span> küçük cisimlerin mercek yardımıyla incelenmesini sağlayan alet

Mikroskop, çıplak gözle görülemeyecek kadar küçük cisimlerin birkaç çeşit mercek yardımıyla büyütülerek görüntüsünün incelenmesini sağlayan bir alettir. Öncelikle adından da anlaşılacağı üzere, mikro, yani çok küçük hücrelerin incelenmesinin yanı sıra, sanayi, menakür, genetik, jeoloji, arkeoloji ve kriminalistik alanında da büyük hizmetler görmektedir.

Johann Deisenhofer Alman biyokimyacı. 1988 yılında, Hartmut Michel ve Robert Huber ile birlikte, "bir fotosentetik reaksiyon merkezinin üç boyutlu yapısını belirledikleri için" Nobel Kimya Ödülü'nü kazanmıştır.

<span class="mw-page-title-main">Hartmut Michel</span>

Hartmut Michel, Alman biyokimyacı. 1988 yılında, Johann Deisenhofer ve Robert Huber ile birlikte, "bir fotosentetik reaksiyon merkezinin üç boyutlu yapısını belirledikleri için" Nobel Kimya Ödülü'nü kazanmıştır.

<span class="mw-page-title-main">Aaron Klug</span>

Aaron Klug OM, Litvanya doğumlu Britanyalı kimyager ve biyofizikçi. Kristalografik elektron mikroskobunun gelişimi ve biyolojik olarak önemli nükleik asit-protein komplekslerinin yapısının aydınlatılması konusundaki çalışmaları için 1982 yılında Nobel Kimya Ödülü'nü kazandı.

Biyomoleküler yapı biyomoleküllerin yapısıdır. Bu moleküllerin yapısı genelde birincil, ikincil, üçüncül ve dördüncül yapı olarak ayrılır. Bu yapının iskeleti, molekül içinde birbirine hidrojen bağları ile bağlanmış ikincil yapı elemanları tarafından oluşturulur. Bunun sonucunda protein ve nükleik asit yapı bölgeleri oluşur.

<span class="mw-page-title-main">John Kendrew</span> araştırmacı

Sir John Cowdery Kendrew, İngiliz biyokimyager ve kristalografi araştırmacısı. Max Perutz ile birlikte Cavendish Laboratuvarındaki hem-içeren proteinlerle ilgili çalışmaları nedeniyle 1962 Nobel Kimya Ödülünü almaya layık görülmüştür.

<span class="mw-page-title-main">X ışını kristalografisi</span> bir kristalin atomik veya moleküler yapısını belirlemek için kullanılan, sıralanmış atomların gelen X-ışınları demetinin belirli yönlere kırılmasına neden olduğu teknik

X ışını kristalografisi bir kristalin atomik ve moleküler yapısını incelemek için kullanılan ve kristalleşmiş atomların bir X-ışını demetindeki ışınların kristale özel çeşitli yönlerde kırınımı olayına dayanan, bir yöntemdir. Kırınıma uğrayan bu demetlerin açılarını ve genliklerini ölçerek bir kristalografi uzmanı kristaldeki elektronların yoğunluğunun üç boyutlu bir görüntüsünü elde edebilir. Bu elektron yoğunluğundan kristaldeki atomların kimyasal bağları, kristal yapıdaki düzensizlikler ve bazı başka bilgilerle birlikte ortalama konumları tespit edilebilir.

<span class="mw-page-title-main">X ışını mikroskobu</span>

Bir x ışını mikroskobu yumuşak X ışını şeritlerinde elektromanyetik radyasyonu kullanarak objelerin büyütülmüş görüntülerini üretir. X ışınları birçok objenin içinden geçebildiğinden onları gözlemlemek için özellikle hazırlamak gerekmez.

Süperlenskırınım sınırının ötesine giden metamateryallerin kullanıldığı bir mercektir. Kırınım sınırı geleneksel lenslerin ve mikroskopların çözünürlük duyarlılığının limitidir. Farklı yollar ile kırınım sınırının ötesine geçebilen birçok lens çeşidi vardır ancak onları engelleyen ve işlevlerini etkileyen birçok etmen vardır.

<span class="mw-page-title-main">Yapısal biyoinformatik</span>

Yapısal biyoinformatik bir biyoinformatik dalı. Protein, RNA ve DNA gibi biyoloji makromolekülleriin 3D yapılarının tahmini ve analizi ile ilgilenir.

Elektron kırınımı, elektronların dalga yapısını ifade eden terimdir. Teknik ya da pratik açıdan ise elektronların harekete geçirilerek, oluşturdukları girişim desenlerinin gözlemlenmesidir.

<span class="mw-page-title-main">Jacques Dubochet</span> İsviçre kimyager, biyofiziksel

Jacques Dubochet, İsviçreli emekli biyofizikçi. Heidelberg, Almanya'daki Avrupa Moleküler Biyoloji Laboratuvarı'nda araştırmacı olarak çalışmıştır ve şu anda İsviçre'nin Lozan Üniversitesi'nde biyofizik dalında onursal profesörlük yapmaktadır.

<span class="mw-page-title-main">Kriyojenik elektron mikroskopisi</span>

Kriyojenik elektron mikroskobu (kriyo-EM), kriyojenik sıcaklıklara soğutulmuş ve vitröz bir su ortamına gömülü numunelere uygulanan bir elektron mikroskobu (EM) tekniği. Bir ızgaraya bir sulu numune çözeltisi uygulanmakta ve sıvı etan içinde dalma ile dondurulmaktadır. Tekniğin gelişimi 1970'lerde başlarken, dedektör teknolojisindeki ve yazılım algoritmalarındaki son gelişmeler, yakın atomik çözünürlükte biyomoleküler yapıların belirlenmesine olanak sağlamıştır. Bu, kristalizasyona ihtiyaç duymadan makromoleküler yapı tayini için X ışını kristalografisi veya NMR spektroskopisi seçeneğine alternatif olarak yaklaşıma büyük dikkat çekmiştir.

Orbiton, holonlar ve spinonlar ile birlikte, katıların içindeki elektronların spin-yük ayrımı sırasında bölünerek oluşturduğu ve mutlak sıfıra yakın sıcaklıklarda hapsedilen sanki parçacıktır. Elektron, teorik olarak her zaman bu üç sanki parçacığın bir bağlı durumu olarak kabul edilmektedir. Bunlardan orbitron, elektronun yörüngesel konumunu taşımaktadır. Belli şartlar altında ise hapis durumlarından kurtularak bağımsız parçacıklar olarak davranabilmektedirler.

<span class="mw-page-title-main">Richard Henderson</span> İngiliz biyokimyacı, moleküler biyolog

Richard Henderson, İskoç moleküler biyolog ve biyofizikçi, ayrıca biyomolekül, elektron mikroskobunda öncü bilim insanı. Henderson, 2017 yılında Jacques Dubochet ve Joachim Frank ile birlikte Nobel Kimya Ödülü almıştır.

<span class="mw-page-title-main">Faz yüzey bilimi</span>

Faz yüzey bilimi, katı - sıvı arayüzleri, katı - gaz arayüzleri, katı - vakum arayüzleri ve sıvı - gaz arayüzleri dahil olmak üzere iki fazın arayüzünde meydana gelen fiziksel ve kimyasal olayların incelenmesidir. Yüzey kimyası ve yüzey fiziği alanlarını içerir. İlgili bazı pratik uygulamalar yüzey mühendisliği olarak sınıflandırılmaktadır. Bilim heterojen kataliz, yarı iletken cihaz üretimi, yakıt hücreleri, kendi kendine monte edilen tek tabakalar ve yapıştırıcılar gibi kavramları kapsar. Faz yüzey bilimi arayüz ve kolloid bilimi ile yakından ilgilidir. Arayüzey kimyası ve fizik her ikisi için de ortak konulardır. Yöntemler farklı. Buna ek olarak, arayüz ve kolloid bilimleri, arayüzlerin özelliklerinden dolayı heterojen sistemlerde ortaya çıkan makroskopik olayları inceler.

<span class="mw-page-title-main">Yapısal biyoloji</span>

Yapısal biyoloji, biyolojinin özellikle amino asitlerden yapılmış olan proteinler, nükleotitlerden yapılmış RNA ve DNA gibi nükleik asitler ve lipitlerden oluşmuş membranlar olmak üzere biyolojik makromoleküllerin yapılarını ve uzamsal dizilişlerini inceleyen bir dalıdır. Yapısal biyoloji asıl olarak biyofizik yöntemleri ile makromoleküllerin atom düzeyinde üç boyutlu yapılarının belirlenmesi, yapısal değişikliklerinin temel prensipleri, moleküler hareketlerin analizi ve bu yapıların dinamiği ile ilgilenir. Makromoleküller hücrelerin hemen hemen tüm işlevlerini yerine getirir ve bunu da yapabilmek için belirli üç boyutlu şekillere girerler. Moleküllerin "üçüncül yapı"sı olarak adlandırılan bu yapılar her molekülün temel bileşimi ya da "birincil yapı"ları ile karmaşık bir şekilde bağlantılıdır.

<span class="mw-page-title-main">Fotonik kristal</span>

Fotonik kristaller, ışığın hareketini kontrol eden periyodik yapılardır. Işığın bu yapılarla etkileşimi, Katı hâl fiziğinde kristal yapıların elektronlarla etkileşimine benzetilebilir; yapının periyodikliği, ışığın ilerleyemeceği bir fotonik bant aralığı oluşturur; bu bant aralığında bulunan dalga boylarındaki fotonlar fotonik kristalde ilerleyemez. Fotonik kristaller, doğada bazı canlılarda bulunmaktadır.