İçeriğe atla

Elektromanyetik dalga denklemi

Elektromanyetik dalga denklemi, elektromanyetik dalgaların bir ortam boyunca ya da bir vakum ortamı içerisinde yayılmasını açıklayan, ikinci dereceden bir kısmi diferansiyel denklemdir. Denklemin, ya elektrik alanı E ya da manyetik alan B cinsinden yazılan homojen formu şöyledir:

burada

Ortamdaki ışık hızıdır ve ∇2 Laplace operatörüdür. Işık hızı, bir vakum ortamı içerisinde c = c0 = 299,792,458 metre/saniye'dir.[1] Elektromanyetik dalga denklemi, Maxwell denklemleri'nden türetilmiştir. Ayrıca, B nin, manyetik akı yoğunluğu" veya manyetik indüksiyon olarak da adlandırılabildiği bilinmelidir.

Elektromanyetik dalga denkleminin kökeni

Maxwell'den Peter Tait'e bir kartpostal.

Maxwell, 1864'teki "Elektromanyetik Alanın Mekanik Teorisi" isimli makalesinde, Ampère'in devre yasası üzerine 1861'deki yayınladığı Kuvvetin fiziksel çizgileri isimli makalesinin 3. kısmında yaptığı hatayı düzeltti. 1864'teki Electromagnetic Theory of Light[2] başlıklı yayınının Part VI kısmında Maxwell, yer değiştirme akımını elektromanyetizmanın diğer bazı denklemleriyle birleştirerek, hız (ışık hızına eşit) bileşenli bir dalga denklemi buldu. Bunu şöyle yorumladı:

Sonuçların uyuşması; ışık ve manyetizmanın aynı özün bir sonucu olduğunu ve ışığın, elektromanyetik yasalarına göre, alan boyunca yayılan; elektromanyetik bir bozulma olduğunu gösteriyor gibi duruyor.[3]

Modern fizikte; çok daha kullanışlı olan ve Ampère devre yasasının düzeltilmiş hali ile Faraday indüksiyon yasasının birleştirilmesi sonucu elde edilen yöntem, Maxwell'in elektromanyetik dalga denklemi çıkarımlarının yerini almıştır.

Modern yöntemi kullanarak, bir vakum ortamı içindeki elektromanyetik dalganın denklemini bulmak için; öncelikle, Maxwell denklemlerinin modern 'Heaviside (iyonosfer)' formuyla başlamalıyız. Bir vakum ortamı içinde ve yüksüz bir boşlukta, bu denklemler şöyledir:

Burada ρ = 0'dır, çünkü boşlukta yük yoğunluğu yoktur.

Rotasyonel denklemlerin rotasyonelini alırsak:

Vektör formunu kullanarak:

'nin boşlukta herhangi bir vektör fonksiyonu olduğu yerde, dalga denklemine dönüşür:

burada

boşluktaki ışık hızını temsil eder.

Homojen dalga denkleminin eş değişkin (kovaryant) formu

Enine harekette zaman genişlemesi. Işık hızının bütün ivmelenmeyen referans sistemlerinde sabit ve aynı olma gerekliliği Özel Görelilik Teorisi'ne çıkar.

Bu rölativistik denklemler karşı değişkin (kontravaryant) formda yazılmış şekli şöyledir:

burada elektromanyetik dört-potansiyeli şu şekildedir:

Lorenz gösterge koşuşu ile:

burada

d'Alembertian operatörüdür. (Kare kutu, bir yazım hatası değildir, bu operatörün sembolüdür.)

Eğri uzay-zamanda homojen dalga denklemleri

Elektromanyetik dalga denklemi iki şekilde düzeltilmiştir; türev ile eşdeğişkin türevi değiştirilmiştir ve eğilmeye bağlı yeni bir terim eklenmiştir.

burada Ricci eğilme tensörü ve noktalı virgül eş değişkin türevlenmesini ifade eder.

Lorenz gösterge (gauge) koşuşunun eğri uzay-zamanda genelleştirilmesi şöyle varsayılır:

Homojen olmayan elektromanyetik dalga denklemi

Yerelleştirilmiş zamana bağlı değişen yük ve akım yoğunlukları boşlukta elektromanyetik dalga kaynağı gibi davranırlar. Maxwell denklemleri kaynakları olan dalga denklemleri şeklinde yazılabilir. Kaynakların dalga denklemlerine eklenmesi kısmi diferansiyel denklemlerini homojen olmayan denklemlere dönüştürür.

Homojen elektromanyetik dalga denklemlerinin çözümleri

Bu 3 boyutlu diyagram doğrusal olarak poliarize olan düzlem dalgasının soldan sağa aynı dalga denklemleriyle yayıldığını gösterir, burada ve

Elektromanyetik dalga denkleminin genel çözümü aşağıdaki dalgaların doğrusal süperpozisyonuyla bulunur:

ve

burada

açısal frekanstır (radyan bölü saniye olarak),
dalga vektörüdür (radyan bölü metre olarak)

g fonksiyonu genellikle sinüs dalgası şeklinde olsa da her zaman sinüsoidal ya da periyodik olmak zorunda değildir. Uygulamada, herhangi bir gerçek elektromanyetik dalga uzayda ve zamana sonlu olacağı için g sonsuz bir periyodikliğe sahip olamaz. Sonuç olarak, Fourier ayrışma teorisi üzerinden, gerçek bir dalga sonsuz sayıda sinüsoidal frekansların süperpozisyonundan oluşmalıdır.

Ek olarak, geçerli bir çözüm için, dalga vektörü ve açısal frekans birbirinden bağımsız değildir; dağılım ilişkisine uymak zorundadırlar:

burada k dalga numarasıdır ve λ dalgaboyudur.

Monokromatik, sinüsoidal kararlı durum

Dalga denkleminin en kolay çözümleri, elimizde tek frekanslı sinüsoidal dalga formlarının olduğunu varsaymamız sonucu olarak ortaya çıkar.

burada

  • imajiner birimdir,
  • açısal frekanstır (radyan bölü saniye olarak),
  • frekanstır (hertz olarak),
  • Euler'in formülüdür.

Düzlem dalga çözümleri

Bir normal (yüzeye dik) birim vektör tarafından tanımlanan bir düzlem düşünün.

Dalga denklemlerinin düzlemsel yayılan dalga çözümleri şu şekildedir:

ve

burada

pozisyon vektörüdür (metre olarak).

Bu çözümler, normal vektör yönünde ilerleyen düzlemsel dalgalar içindir. Eğer z yönünü yönü olarak tanımlarsak ve x yönünü yönü olarak tanımlarsak, Faraday yasasına göre manyetik alan çizgileri y yönünde olur ve elektrik alanla şu ilişki içerisindedir: . Elektrik alanın ve manyetik alanın diverjansı sıfır olduğu için ilerleme yönünde herhangi bir alan yoktur.

Bu çözüm, doğrusal polarize dalga denklemlerinin çözümüdür. Ayrıca alanların normal vektör etrafında döndüğü dairesel polarize çözümler de vardır.

Spektral ayrışım

Maxwell denklemleri vakum ortamında doğrusal oldukları için çözümler sinisoidlerin süperpozisyonuna ayrıştırılabilirler. Bu, diferansiyel denklemlerin çözümü için kullanılan Fourier dönüşümünün temelidir. Elektromanyetik dalga denkleminin sinüsoidal çözümü şu şekli alır:

ve

burada

zamandır (saniye olarak),
açısal frekanstır (radyan bölü saniye olarak),
dalga vektörüdür (radyan bölü metre olarak),
faz açısıdır (radyan olarak).

Dalga vektörü açısal frekansla şu ilişki içerisindedir:

burada k dalga numarasıdır ve λ dalga boyudur.

Elektromanyetik spektrum, dalga enerjilerinin (büyüklüklerinin), dalga boyunun bir fonksiyonu olarak grafiğinin çizilmesidir.

Çok kutuplu açılım

Monokromatik alanların zamanla şu şekilde değiştiğini varsayalım: . Eğer Maxwell denklemlerini B ifadesini yok etmek için kullanırsak, elektromanyetik dalga denklemi E için Helmholtz denklemine indirgenmiş olur.

Yukarıda verildiği gibi k = ω/c. Alternatif olarak, E ifadesi de B için yok edilebilir ve şu elde edilir:

Frekansı ω olan bir elektromanyetik alan bu iki denklemin toplamı olarak yazılabilir. Helmholtz denkleminin üç boyutlu çözümleri katsayıları küresel Bessel fonksiyonlarıyla orantılı olan küresel harmoniklerin açılım şeklinde ifade edilebilr. Ancak, bu açılımları E ve B ifadelerinin her bir vektörel bileşenine uygularsak çözümlerimiz diverjansları sıfır olan sonuçlar vermeyebilir. (E = B = 0). Bu nedenle katsayılar üzerinde bazı sınırlamalara ihtiyaç duyarız.

Çok kutuplu açılım bu zorluğu, eğer E veya B ifadeleri yerine r • E' veya r • B ifadelerini küresel harmoniklerde açarsak, önleyecektir. Bu açılımlar yine Helmholtz denklemlerini E ve B için çözecektir. Divejansı sıfır olan bir alan F için ∇2 (r • F) = r • (∇2 F). Genel bir elektromanyetik alan için çıkan ifadeler:

,

burada ve (l, m) derecedemn elektrik çok kutuplu alanlardır, ve buna karşılık gelen manyetik çok kutuplu alanlardır ve aE(l,m) ve aM(l,m) açılım katsayılarıdır. Çok kutuplu alanlar şu şekilde verilir:

,

burada hl(1,2)(x) Küresel Hankel fonksiyonlarıdır, El(1,2) ve Bl(1,2) sınır koşulları kullanılarak belirlenir, normalize edilmiş vektör küresel harmoniktir, yani:

Elektromanyetik alanın çok kutuplu açılımının küresel simetrisi olan birçok alanda uygulamasının olduğu görüyoruz. Örnek olarak, anten çizgesi veya nükleer gama ışını verilebilir. Bu uygulamalarda, birisi uzak alanda yayılan güçle ilgilidir. Bu bölgelerde E ve B alanları şunların asimptotudur:

Zaman-ortalamalı yayılan gücün açısal dağılımı şöyle bulunur:

Diğer çözümler

Elektromanyetik dalga denklemleri için başka küresel ve silindirik olarak simetrik olan analitik çözümler de bulmak mümkündür.

Küresel koordinatlarda dalga denklemi çözümleri aşağıdaki gibi yazılabilir:

,

ve

Bunlar küresel Bessel fonksiyonu olarak yeniden yazılabilir.

Silindirik koordinatlarda dalga denklemi çözümleri sıradan tam sayı derecesinden Bessel fonksiyonudur.

Ayrıca bakınız

Teori ve deney

Uygulamalar

Biyografiler

Kaynakça

  1. ^ Current practice is to use c0 to denote the speed of light in vacuum according to ISO 31. 1983 tarihli orijinal Recommendation'da, sembol,c, bu amaç için kullanılmıştır. See NIST Special Publication 330, Appendix 2, p. 45 3 Haziran 2016 tarihinde Wayback Machine sitesinde arşivlendi.
  2. ^ Maxwell 1864, page 497.
  3. ^ See Maxwell 1864, page 499.

Konuyla ilgili yayınlar

Elektromanyetizma

Dergi yazıları

  • Maxwell, James Clerk, "A Dynamical Theory of the Electromagnetic Field", Philosophical Transactions of the Royal Society of London 155, 459-512 (1865). (This article accompanied a December 8, 1864 presentation by Maxwell to the Royal Society.)

Lisans seviyesi ders kitapları

Lisansüstü seviye ders kitapları

Vektör kalkülüsü

  • P. C. Matthews Vector Calculus, Springer 1998, ISBN 3-540-76180-2
  • H. M. Schey, Div Grad Curl and all that: An informal text on vector calculus, 4th edition (W. W. Norton & Company, 2005) ISBN 0-393-92516-1.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

<span class="mw-page-title-main">Del işlemcisi</span>

Yöney analizinde del işlemcisi, 3 boyutlu Kartezyen koordinatlarda nabla işlemcisine denk gelir ve simgesiyle gösterilir.

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Mie saçılması</span>

Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

<span class="mw-page-title-main">Ampère kanunu</span>

Klasik elektromanyetizmada Ampère yasası kapalı bir eğri üzerinden integrali alınmış manyetik alanla o eğri üzerindeki elektrik akımı arasındaki ilişkiyi açıklayan yasadır. James Clerk Maxwell yasayı hidrodinamik olarak 1861 tarihli Fizikte kuvvet çizgileri üzerine makalesinde tekrar kanıtlar. Yasanın matematiksel ifadesi şu anda klasik elektromanyetizmayı oluşturan dört temel Maxwell denkleminden biridir.

Klein-Gordon Denklemi, Schrödinger denkleminin bağıl/göreli (relativistik) olan versiyonudur ve atomaltı fizikte kendi ekseni etrafında dönmeyen parçacıkları tanımlamada kullanılır. Oskar Klein ve Walter Gordon tarafından bulunmuştur.

Genlik, periyodik harekette maksimum düzey olarak tanımlanabilir. Genlik, bir dalganın tepesinden çukuruna kadar olan düşey uzaklığın yarısıdır. Genlik kavramı ışık, elektrik, radyo dalgaları gibi konuları da kapsayan fen bilimleri alanında kullanılır.

Admittans elektrik mühendisliğinde karmaşık iletkenlik anlamına gelir. Admittans ile empedans çarpımı 1 dir. Admittans Y ile gösterilir. Birimi MKS sisteminde siemens (S)'dir. Kimi eski kitaplarda S yerine mho birimi de kullanılır.

<span class="mw-page-title-main">Elektromanyetik alan</span>

Elektromanyetik alan, Elektrik alanı'ndan ve Manyetik alan'dan meydana gelir.

Φ harfiyle gösterilen Manyetik akı, toplam manyetizmanın ölçüsüdür ve bu yönüyle elektrik yükün manyetik karşılığıdır. Manyetik akı yoğunluğu ise B harfiyle gösterilir ve birim kesit alandan geçen manyetik akı miktarının ölçüsüdür.

<span class="mw-page-title-main">Liénard-Wiechert potansiyelleri</span>

Liénard-Wiechert potansiyelleri yüklü bir noktasal parçacığın hareketi esnasında oluşan klasik elektromanyetik etkiyi bir vektör potansiyeli ve bir skaler potansiyel cinsinden ifade eder. Maxwell denklemlerinin doğrudan bir sonucu olarak bu potansiyel relativistik olarak doğru, tam, zamana bağlı etkileri de içeren, noktasal parçacığın hareketine herhangi bir sınır konulmaksızın en genel durum için geçerli olan fakat kuantum mekaniğinin öngördüğü etkileri açıklayamayan elektromanyetik bir alan tanımlar. Dalga hareketi formunda yayılan elektromanyetik ışıma bu potansiyellerden elde edilebilir.

<span class="mw-page-title-main">Yer değiştirme akımı</span>

Elektromanyetizmada yer değiştirme akımı elektrik yer değiştirme alanının değişim oranıyla tanımlanan bir niceliktir. Yer değiştirme akımının birimi akım yoğunluğu cinsinden ifade edilir. Yer değiştirme akımı gerçek akımlar gibi manyetik alan üretir. Yer değiştirme akımı hareketli yüklerin yarattığı bir elektrik akımı değil; zamana bağlı olarak değişim gösteren elektrik alanıdır. Maddelerde, atomun içerisinde bulunan yüklerin küçük hareketlerinin de buna bir katkısı vardır ki buna dielektrik polarizasyon denir.

<span class="mw-page-title-main">Sicim kozmolojisi</span>

Sicim kozmolojisi, ilk kozmolojinin sorularını sicim kuramındaki eşitlikleri uygulayarak çözmeye çalışan yeni bir alandır.Çalışmaların bağlantılı bölgesi brane kozmolojisidir. Bu yaklaşım sicim kuramının şişme kozmolojik modelinden türetilebilir, bu sayede ilk büyük patlama senaryolarına kapı açılmıştır. Fikir, eğimli bir arka planda bozonik sicim özelliği ile bağlantılıdır, düzgün olmayan sigma modeli olarak bilinir. Bu modelin ilk işlemleri beta işlevi olarak gösterilir, modelin sürekli ölçünü bir enerji düzeyinin işlevi olarak nitelendirir, Ricci tensörü ile orantılı olmakla birlikte Ricci akışına da mahal vermiştir. Bu model konformal değişmeze sahip olduğundan mantıklı bir kuantum alan kuramı olarak tutulmalı, beta işlevi ise ardından, hemen sıfır üreten Einstein alan eşitliği olmalıdır. Einstein’ın eşitlikleri bir şekilde yersiz görünse de, bu sonuç kesinlikle iki-boyutlu modelin daha fazla boyutlu fizik üretebileceğini göstermesi açısından dikkat çekicidir. Buradaki ilgi çekici nokta ise sicim kuramı gereksinim olmasa da düz bir arka plandaki tutarlıkla 26 boyut olarak formulize edilebilir. Bu Einstein’ın eşitliklerinin altında yatan fiziğin konformal alan kuramı ile açıklanabileceğine dair ciddi bir ipucudur. Aslında, bu sicim kozmolojisi için şişmeci bir evrene sahip olduğumuza dair bir kanıtımız olduğuna işarettir.Evrenin evriminde, şişme evresinden sonra, bugün gözlemlenen genişleme Firedmann eşitliklerinde tam anlamıyla tanımlanmıştır. İki farklı evre arasında pürüzsüz bir geçiş beklenir. Sicim kozmolojisi, geçişi açıklamakta zorluk çeker. Bu sözlükte zarif çıkış problemi olarak bilinir. Şişmeci kozmoloji skaler alanın varlığının şişmeyi zorladığını ima eder. Sicim kozmolojisinde bu durum dilaton alanına mahal verir.. Bu skaler ifade, düşük enerjilerin efektif kuramı olan skaler alanın bozonik sicimin tanımına girer. Bu eşitlikler Brans-Dicke kuramındakilere benzer. Nicel çözümlenimler boyutların kritik sayısını, (26), dörde düşürmeye çalışır. Genel olarak, Friedmann eşitliklerinden rastgele sayıda boyut elde edilebilir. Başka bir durum ise boyutların kesin sayısı etkili dört boyut kuramı ile çalışarak sıkıştırılmış evrenleri üretir. Sıkıştırılmış boyutlarda skaler alanların oluştuğu Kaluza-Klein kuramı buna bir örnektir. Bu alanlara modili denir.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

Matematiksel fizikte, hareket denklemi, fiziksel sistemin davranışını, sistem hareketinin zamanı ve fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemi, matematiksel fonksiyonların kümesini "devinimsel değişkenler" cinsinden izah eder. Normal olarak konumlar, koordinat ve zaman kullanılır ama diğer değişkenler de kullanılabilir: momentum bileşenleri ve zaman gibi. En genel seçim genelleştirilmiş koordinatlardır ve bu koordinatlar fiziksel sistemin karakteristiğinin herhangi bir uygun değişkeni olabilirler. Klasik mekanikte fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte öklid uzayı, eğilmiş uzay ile tanımlanmıştır. Eğer sistemin dinamiği biliniyor ise denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

<span class="mw-page-title-main">Magnetostatik</span>

Magnetostatik, Akımın sabit olduğu sistemlerdeki Manyetik alanlar üzerine çalışan bir alandır. Yüklerin sabit olduğu Elektrostatikin bir manyetik analoğudur. Mıknatıslanma, statik olmak zorunda değildir. Magnetostatik eşitlikleri, nanosaniyede ya da daha kısa sürede manyetik cereyanları tahmin etmek için kullanılabilir. Magnetostatik, akımlar sabit olmadığında bile yeterince iyi bir yaklaşımdır. Akımların sürekli değişmemesi gerekir. Magnetostatik, mikro manyetiğin çok kullanılan bir uygulamasıdır. Manyetik kayıt cihazları gibi.

Bu madde Vektör Analizi'ndeki önemli özdeşlikleri içermektedir.