İçeriğe atla

Elektrik alan perdelemesi

Perdeleme, hareketli yük taşıyıcılarının varlığından ortaya çıkan elektrik alanının sönümünü ifade eder. Metaller ve yarıiletkenlerdeki iletim elektronları ve iyonize olmuş gazlar(klasik plazma) gibi yük taşıyıcı akışkanlarda gözlemlenir. Elektriksel olarak yüklenmiş parçacıklardan oluşan bir akışkanda, her çift parçacık Coulomb kuvveti ile etkileşir,

.

Bu etkileşim akışkanın teorik davranışını karmaşık hale getirir. Mesela, temel seviye enerji yoğunluğunun salt kuantum mekaniksel hesabı sebepsiz olarak sonsuza gider. Buradaki zorluk; Coulomb etkisi 1/r² ile azalmakla beraber, her r mesafesindeki parçacıkların ortalama sayısının ile orantılı olmasıdır (akışkanın izotropik olduğu varsayılmaktadır). Sonuç olarak, bir noktadaki yük dalgalanması uzak mesafelerde ihmal edilebilir değildir.

Gerçekte, uzun menzilli etkiler elektrik alanlara duyarlı akışkan parçacıklarının akımı ile söner. Bu akım parçacıklar arası etkin etkileşimi kısa menzilli "perdelenmiş" Coulomb etkileşimine indirger.

Elektronlardan oluşan bir akışkanı ele alalım. Her elektron diğer elektronları itecek bir elektrik alana sahiptir. Sonuçta, elektronun çevresi normal durumdan daha düşük elektron yoğunluğuna sahip olacaktır. Bu bölge pozitif yüklenmis "perdeli boşluk" olarak algılanabilir. Uzak mesafelerden bakıldığında bu perdeli boşluk, elektronlar tarafından üretilen elektrik alanı ortadan kaldıran bir positif yükünki ile eşdeğer etkiye sahiptir. Boşluk bölgesi içinde elektronun ürettiği alan sadece kısa mesafelerde tespit edilebilecektir.

Electrostatik perdeleme

Perdeleme olgusuna ilk teorik bakış, Debye ve Hückel (1923) tarafından, akışkan içine gömülü durağan noktasal bir yükle başlar. Bu olguya electrostatik perdeleme adı verilir.

Arka zemini ağır ve pozitif yüklü iyonlardan oluşan, içi elektron dolu bir akışkan hayal edelim. Basitçe, hareketini ve mesafeye bağlı dağılımını ihmal ettiğimiz iyonların arka zeminde düzenli bir yük dağılımına sahip olduklarını varsayalım. Bu varsayım, elektronlar iyonlara nazaran daha hafif, daha hareketli oldukları için geçerlidir. Bu varsayıma göre elektronlar arası mesafe iyonlar arası mesafeden dahabüyüktür. Yoğun madde fiziğinde, anlattığımız bu modele jel modeli denilmektedir.

ρ (elektronların) parçacık yoğunluğu, φ electrik potansiyelidir. İlk etapta, elektronlar uzayda eşit olarak dağıldığı için her noktada net yük sıfırdır. Böylece φ başlangıçta sabittir.

Sistemin merkezine hareketsiz duran nokta Q yükü yerleştirirsek, buna bağlı yük yoğunluğu (r) olur. δ(r) Dirac delta fonksiyonudur. Sistem denge durumuna döndüğünde elektron yoğunluğu ve elektrik potansiyelindeki değişiklikler sırasıyla Δρ(r) ve Δφ(r) olur. Elektron yoğunluğu ve elektrik potansiyeli Maxwell eşitliklerinin ilki ile ilişkilendirilir,

.

Teoriyi geliştirmek için, Δρ ve Δφ ile ilgili ikinci bağımsız bir denkleme ihtiyaç vardır. İki parametrenin orantılı olduğu iki olası yaklaşım: Debye-Hückel yaklaşımı(yüksek sıcaklıklar için) ve Fermi-Thomas yaklaşımıdır (düşük sıcaklıklar için).

Debye-Hückel yaklaşımı

Debye-Hückel yaklaşımında, sistemi termodinamik dengede; akışkan parçacıklarının Maxwell-Boltzmann staistatistiğini sağlayacak bir T sıcaklığında tutatrız. Uzayın her bir noktasında j enerjili elektronların yoğunluğunun ifadesi

burada kB Boltzmann sabitini ifade eder. φ yi rahatsız edersek ve exponensiyel ifadeyi birinci dereceden açarsak, elde edeceğimiz ifade

olur ki, bu eşitlikte

.

Denklemde yer alan uzunluk λD ≡ 1/k0 Debye uzunluğu olarak adlandırılır. Debye uzunluğu klasik plazmada temel uzunluk ölçüsüdür.

Fermi-Thomas yaklaşımı

Fermi-Thomas yaklaşımında, sistem sabit bir kimyasal potansiyel ve düşük bir sıcaklıkta bırakılır (bahsedilen koşul gerçek bir deneyde, taban durumu elektrik ile sabit potansiyel farkına sahip bir elektrik kontağındaki akışkanın korunmasına karşılık gelir). Kimyasal potansiyel μ tanım olarak akışkana eklenen ilave bir elektronun enerjisini ifade eder. Bu enerji, kinetik enerji T ve potansiyel enerji - olarak iki parçadan oluşabilir. Kimyasal potansiyel sabit tutulduğunda,

.

Eğer sıcaklık yeterince düşükse, elektronların davranışı kuantum mekaniksel bir model olan ""serbest elektron gazı""na yaklaşır. Böylece serbest elektron gazında yer alan ilave bir elektronun kinetik enerjisini ifade eden T Fermi enerjisi EF olur. Fermi enerjisinin elektron yoğunluğu ile ilişkisi (spin dejeneresini de içerir)

Birinci dereceden pertürbasyonda bulacağımız ifade

.

Bunu bir önceki eşitlikte yerine koyarsak Δμ için elde edeceğimiz denklem

burada

bu eşitlik Fermi-Thomas perdeleme dalga vektörü olarak adlandırılır.

Eetkileşimsiz elektron modeli olan serbest elektron gazı için önceden türetilmiş denklemler eled edildi. Hâlbuki üzerinde çalışılan akışkan, Coulomb etkileşimini içermektedir. Yani Fermi-Thomas yaklaşımı, elektron yoğunluğunun çok yüksek olduğu ve böylece parçacık etkileşimlerinin nispeten zayıf olduğu durumlarda geçerlidir.

Perdelenmiş Coulomb etkileşimleri

Debye-Hückel ya da Fermi-Thomas yaklaşımları ile elde edilen sonuçlar birinci Maxwell eşitliği içine yerleştirilebilir. Sonuç

bu denklem perdelenmiş Poisson denklemi olarak bilinir. Dnklemin çözümü

bu ifade perdelenmiş Coulomb potansiyeli olarak adlandırılır. Bu, eksponensiyel sönüm terimi ile çarpılmış bir Coulomb potansiyelidir. Sönüm faktörü k0 ile ifade edilir ve Debye ya da Fermi-Thomas dalga vektörü olarak adlandırılır. Bahsedilen potansiyelin şekli Yukawa potansiyeline benzemektedir. Bu perdeleme, dielectrik fonksiyonunu verir.

Kuantum-mekaniksel perdeleme

Gerçek metallerde, elektriksel perdelemenin fiziksel tanımı Fermi-Thomas teorisindekinden daha karmaşıktır. Bu karmaşıklık, Fermi-Thomas teorisinde hareketli yüklerin (elektronlar) herhangi bir dalga vektörü değerinde tepki verdiğini farzetmemizden kaynaklanır. Aslında, Fermi yüzeyi içinde ya da üzerinde yer alan bir elektronun Fermi dalga vektöründen daha kısa dalga vektörlerinde tepki vermesi beklenemez. Bu Gibbs fenomeni ile ilgilidir. Bu fenomene göre, uzayda hızlı değişimler sergileyen fonksiyonların fourier serileri, seride yer alan birçok terimi göz önüne almadan yapılan hesaplarda iyi bir yaklaşım sayılamaz. Fizikte bunlara Friedel salınımları denir ve yüzey ile yığın perdelemesinde kullanılır. Her durumda, net elektrik alan uzayda eksponansiyel bir düşüş göstermez.

Kaynakça

İlgili Araştırma Makaleleri

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

<span class="mw-page-title-main">Elektrik alanı</span>

Elektriksel alan, kıvıl alan, elektrik alan veya elektrik alanı, elektriksel yükü veya manyetik alanı çevreleyen uzayın bir özelliği olup, içerisinde bulunan yüklü nesnelere elektriksel güç aracılığı ile etki eder. Kavram fiziğe Michael Faraday tarafından kazandırılmıştır.

<span class="mw-page-title-main">Dirac delta fonksiyonu</span>

Adını Paul Dirac' tan alan Dirac delta fonksiyonu tek boyutta

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Elektrostatik</span> durağan elektrik yüklerinin incelenmesi

Elektrostatik, duran veya çok yavaş hareket eden elektrik yüklerini inceleyen bir bilim dalıdır.

<span class="mw-page-title-main">Gauss yasası</span>

Fizikte Gauss'un akı teoremi olarak da bilinen Gauss yasası, elektrik yükünün ortaya çıkan elektrik alanına dağılımına ilişkilendiren matematiksel bir yasadır. Söz konusu yüzey küresel yüzey gibi bir hacmi çevreleyen kapalı bir yüzey olabilir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Klasik elektromanyetizma</span>

Klasik elektromanyetizm, klasik elektromıknatıslık ya da klasik elektrodinamik teorik fiziğin elektrik akımı ve elektriksel yükler arasındaki kuvvetlerin sonuçlarını inceleyen dalıdır. kuantum mekaniksel etkilerin ihmal edilebilir derecede küçük olmasını sağlayacak kadar büyük ölçütlü sistemler için elektromanyetik fenomenlerin mükemmel bir açıklamasını sunar.

<span class="mw-page-title-main">Liénard-Wiechert potansiyelleri</span>

Liénard-Wiechert potansiyelleri yüklü bir noktasal parçacığın hareketi esnasında oluşan klasik elektromanyetik etkiyi bir vektör potansiyeli ve bir skaler potansiyel cinsinden ifade eder. Maxwell denklemlerinin doğrudan bir sonucu olarak bu potansiyel relativistik olarak doğru, tam, zamana bağlı etkileri de içeren, noktasal parçacığın hareketine herhangi bir sınır konulmaksızın en genel durum için geçerli olan fakat kuantum mekaniğinin öngördüğü etkileri açıklayamayan elektromanyetik bir alan tanımlar. Dalga hareketi formunda yayılan elektromanyetik ışıma bu potansiyellerden elde edilebilir.

Fermi-Dirac istatistikleri, fizik biliminin bir parçası olarak Pauli dışlama prensibine uyan eş parçacıkları içeren sistemdeki bir parçacığın enerjisini tanımlar. Birbirlerinden bağımsız olarak bunu keşfeden Enrico Fermi ve Paul Dirac'tan sonra adlandırılmıştır.

Matematikte, Poisson denklemi elektrostatik, makine mühendisliği ve teorik fizik'de geniş kullanım alanına sahip eliptik türdeki Kısmi diferansiyel denklemlerdir. Fransız matematikçi, geometrici ve fizikçi olan Siméon Denis Poisson'dan sonra isimlendirilmiştir. Poisson denklemi

Görüntü yük yöntemi, elektrostatikte kullanılan bir soru çözüm tekniğidir. İsimlendirmenin kökeni problemdeki sınır koşullarını bazı sanal yükler ile değiştirme yönteminden gelir.

Ewald toplamı, ismini Paul Peter Ewald'dan alır, periyodik sistemlerin, özellikle elektrostatik enerjilerin, etkileşim enerjilerini hesaplayan bir yöntemdir. Ewald toplamı Poisson toplam formülünde gerçek uzaydaki etkileşim enerjilerinin Fourier uzayındaki denk bir toplam ile değiştirilmiş toplam formülünün özel bir halidir. Bu yöntemin avantajı gerçek uzaydaki etkileşimler uzun mesafeli olduğunda Fourier uzayındaki toplamın hızlı yakınsıyor olmasıdır. Elektrostatik enerjiler kısa ve uzun mesafeli etkileşimlerden oluştukları için en verimli hesaplama etkileşim potansiyeli gerçek uzayda kısa mesafeli etkileşim toplamı ve Fourier uzayında uzun mesafeli etkileşim toplamı olarak iki parçaya ayrıldığında gerçekleşir.

Kuantum mekaniği ve Kuantum alan kuramı içinde yayıcı belirli bir zamanda bir yerden başka bir yere seyahat etmek ya da belirli bir enerji ve momentum ile seyahat için bir parçacığın olasılık genliği verir. Yayıcılar Feynman diyagramları iç hatları üzerinde sanal parçacık'ların katkısını temsil etmek üzere kullanılmaktadır. Ayrıca partikül uygun dalga operatörünün tersi olarak görülebilir ve bu nedenle sıklıkla Green fonksiyonları olarak adlandırılır.

<span class="mw-page-title-main">Enerji biçimleri</span>

Enerji biçimleri, iki ana grubu ayrılabilir: kinetik enerji ve potansiyel enerji. Diğer enerji türleri bu iki enerji türünün karışımdan elde edilir.

Lamb kayması, adını Willis Lamb'den alan, hidrojen atomunun kuantum elektrodinamiğindeki 2S1/2 ve 2P1/2 enerji düzeyleri arasındaki küçük farklılıktır. Dirac denklemine göre, 2S1/2 ve 2P1/2 orbitalleri (yörüngeleri) aynı enerjiye sahip olmalıdır. Ancak, boşluktaki elektronlar arasındaki etkileşim, 2S1/2 ve 2P1/2 enerji düzeylerinde küçük bir enerji değişimine sebep olur. Lamb ve Robert Retherford bu değişimi 1947'de ölçmüşlerdir ve bu ölçüm, ıraksamayı açıklamak için tekrar normalleştirme teorisine teşvik edici bir unsur olmuştur. Bu, Julian Schwinger, Richard Feynman, Ernst Stueckelberg ve Sin-Itiro Tomonaga tarafından geliştirilmiş modern kuantum elektrodinamiğinin müjdecisiydi. Lamb, 1955 yılında Lamb kayması ile ilgili keşiflerinden ötürü Nobel Fizik Ödülü'nü kazandı.

Kerr–Newman metriği genel relativitide yüklü, dönen kütlelerin çevresindeki uzay zaman geometrisini tarif eden Einstein–Maxwell denklemlerinin çözümüdür. Bu çözüm astrofizik alanındaki fenomenler için pek faydalı sayılmaz çünkü gözlemlenebilen astronomik objeler kayda değer net yük taşımazlar. Bu çözüm uygulama alanı yerine daha çok teorik fizik ve matematiksel ilginin bir sonucudur..

<span class="mw-page-title-main">Elektriksel özdirenç ve iletkenlik</span> Wikimedia anlam ayrımı sayfası

Elektriksel öz direnç, belirli bir malzemenin elektrik akımının akışına karşı nicelleştiren bir özelliktir. Düşük bir direnç kolaylıkla elektrik akımının akışını sağlayan bir malzeme anlamına gelir. Karşıt değeri, elektrik akımının geçiş kolaylığını ölçen elektriksel iletkenliktir. Elektriksel direnç, mekanik sürtünme ile kavramsal paralelliklere sahiptir. Elektriksel direncin SI birimi ohm, elektriksel iletkenliğin birimi ise siemens (birim) (S)'dir.

Teorik fzikte, Nordstrom kütleçekim kanunu genel göreliliğin bir öncülüdür. Açıkçası, Fin’li teorik fizikçi Gunnar Nordström tarafından 1912 de ve 1913 te önerilen iki ayrı teori vardır. Bunlardan ilki, hızla geçerliliğini yitirmiş, ancak ikinci, yerçekimi etkileri kavisli uzay-zaman geometrisi bakımından tamamen kabul eden. kütleçekim metrik teorisinin bilinen ilk örneği olmuştur. Nordstrom teorilerinin hiçbiri gözlem ve deney ile uyum içinde değildir. Bununla birlikte, ilkinin kısa sürede üzerindeki ilgiyi kaybetmesi, ikinciyi de etkilemiştir. İkinciden geriye kalan, kütleçekim kendine yeten relativistik teorisi. Genel görelilik ve kütleçekim teorileri için temel taşı niteliği görevi görmektedir. Bir örnek olarak, bu teori, pedagojik tartışmalar kapsamında özellikle yararlıdır.

<span class="mw-page-title-main">Fermi'nin etkileşimi</span>

Parçacık fiziğinde, Fermi etkileşimi beta bozunmasının 1933'te Enrico Fermi tarafından önerilmiş bir açıklamasıdır. Teori, dört fermiyonun birbiriyle direkt etkileştiğini varsayar. Bu etkileşim bir nötronun bir elektron, bir nötrino ve bir protonla doğrudan bağlanmasıyla bir nötronun beta bozunmasını açıklar.