İçeriğe atla

Eksfoliyasyon eklemi

Yosemite Ulusal Parkı, Kaliforniya'da yarım kubbenin etrafına sarılmış pul pul dökülme eklemleri.
Enchanted Rock State Natural Arena, Tekas, ABD'deki granitten pul pul dökülme eklemleri, müstakil bloklar, dik eğilimli eklem düzlemi boyunca kaymıştır.

Eksfoliyasyon eklemleri veya lehva eklemleri, kayadaki yüzeye paralel kırılma sistemleridir ve genellikle eş merkezli levhaların erozyonuna yol açar. (Bkz. Ortak (jeoloji) ).

Pul pul dökülme derzlerinin genel özellikleri

Pek çok farklı manzarada ortak olmalarına rağmen, jeologlar genel bir pul pul dökülme eklem oluşumu teorisi üzerinde henüz bir anlaşmaya varmış değiller. Birçok farklı teori önerilmiştir, aşağıda en yaygın olanların kısa bir özeti bulunmaktadır.

Pul pul dökülme derzlerinin oluşumu

Pek çok farklı manzarada ortak olmalarına rağmen, jeologlar genel bir pul pul dökülme eklem oluşumu teorisi üzerinde henüz bir anlaşmaya varmış değiller. Birçok farklı teori önerilmiştir, aşağıda en yaygın olanların kısa bir özeti bulunmaktadır.

Aşırı yük ve geri tepmenin giderilmesi

Yosemite Ulusal Parkı, Kaliforniya'da bir yol kesiminde maruz kalan pul pul dökülme eklemleri.

Bu teori, ilk olarak 1904 yılında öncü jeomorfolog Grove Karl Gilbert tarafından önerilmiştir. Bu teorinin temeli, derin gömülü kayanın toprak yüzeyine taşması ve aşırı yükünün erozyonu, daha önce sıkıştırılmış kayanın radyal olarak genişlemesine, gerilme gerilimi yaratmasına ve kayayı kırmasına izin vermesidir. Zemin yüzeyine paralel katmanlar halinde. Bu mekanizmanın açıklaması, basınç bırakma veya boşaltma eklemleri dahil olmak üzere pul pul dökülme derzleri için alternatif terimlere yol açmıştır. Bu teorinin mantığı çekici olsa da, eksik olabileceğini düşündüren saha ve laboratuvar gözlemlerinde birçok tutarsızlık vardır, örneğin:[6][10][12]

  • Pul pul dökülme derzleri, hiç derinlemesine gömülmemiş kayalarda bulunabilir.
  • Laboratuvar çalışmaları, kaya örneklerinin gerçekçi koşullar altında basitçe sıkıştırılması ve gevşetilmesinin kırılmaya neden olmadığını göstermektedir.
  • Pul pul dökülme eklemleri en yaygın olarak yüzeye paralel basınç gerilimi bölgelerinde bulunur, oysa bu teori bunların uzama bölgelerinde meydana gelmesini gerektirir.

Bu teorinin basınç gerilmesi teorisine uyması için olası bir uzantısı (aşağıda özetlenmiştir) şöyledir[3]  (Goodman, 1989): Derin gömülü kayaların kazılması dikey gerilimi hafifletir,ancak yatay gerilmeler yeterli bir kaya kütlesinde kalabilir çünkü ortam yanal olarak sınırlıdır. Dikey gerilim bu sınırda sıfıra düştüğü için yatay gerilmeler mevcut zemin yüzeyiyle hizalanır. Böylelikle, aşağıda tarif edildiği gibi, çekme kayası kırılmasına yol açabilen, ekme yoluyla büyük yüzeye paralel sıkıştırma gerilimleri üretilebilir.

Termoelastik gerinim

Kaya ısındığında genişler ve soğuduktan sonra büzülür ve farklı kaya oluşturan mineraller değişken ısıl genleşme/daralma oranlarına sahiptir. Günlük kaya yüzeyi sıcaklık değişimleri oldukça büyük olabilir ve birçoğu, ısıtma sırasında oluşan gerilmelerin, kayanın yüzeye yakın bölgesinin ince levhalarda genişlemesine ve ayrılmasına neden olduğunu öne sürmüştür (örneğin Wolters,1969).[12] Büyük günlük veya yangının neden olduğu sıcaklık dalgalanmalarının, bazen pul pul dökülme olarak adlandırılan kayaların yüzeyinde ince laminasyon ve pullanma oluşturduğu gözlemlenmiştir.[13]  Ancak, günlük sıcaklık dalgalanmaları kayada yalnızca birkaç santimetre derinliğe ulaştığından (kayanın düşük termal iletkenliği nedeniyle), bu teori, 100 metreye ulaşabilen gözlemlenen pul pul dökülme derzi derinliğini açıklayamaz.[1][3][6][10]

Kimyasal ayrışma

Suya nüfuz ederek minerallerin ayrışması, ince kaya kabuklarının soyulmasına neden olabilir.[10] Çünkü bazı minerallerin hacmi hidrasyon ile artar. Bununla birlikte, tüm mineral hidrasyon hacminin artmasına neden olmazken, pul pul dökülme eklemlerinin saha gözlemleri, eklem yüzeylerinin önemli kimyasal değişiklikler yaşamadığını gösterir. Bu nedenle bu teori, büyük ölçekli, daha derin pul pul dökülme eklemlerinin kökeni için bir açıklama olarak reddedilebilir.

Basınç gerilmesi ve uzama kırığı

Eksfoliyasyon derzleri, Yosemite Milli Parkı'ndaki masif granit kayaların yüzeye yakın kısımlarını değiştirdi ve burada gösterilen yarım kubbe de dahil olmak üzere birçok muhteşem kubbenin yaratılmasına yardımcı oldu.

Karaya (veya serbest) bir yüzeye paralel olan büyük sıkıştırma tektonik gerilmeler, kırılma yayılma yönünün en büyük basınç gerilmesi prensibine paralel olduğu ve kırılma açıklığının yönünün serbest yüzeye dik olduğu kayada gerilme modu kırıkları oluşturabilir.[3][6][7][8][9][10][14] Bu tip kırılma, laboratuvarda en az 1900'den beri gözlenmiştir. (hem tek eksenli hem de çift eksenli rafine edilmemiş sıkıştırma yükünde; bkz. Gramberg, 1989).[15] Çekme çatlakları, kaya kafesindeki yaygın mikro çatlakların etkisi ve tercihen yönlendirilmiş mikro çatlakların uçlarından kanat çatlaklarının uzatılması nedeniyle sıkıştırma stres alanında oluşabilir.[16][17] Daha sonra ana basınç geriliminin yönü ile hizalanır. Bu şekilde oluşan kırıklar bazen eksenel bölünme, uzunlamasına bölünme veya uzama kırıkları olarak adlandırılır ve genellikle tek eksenli sıkıştırma testleri sırasında laboratuvarda görülür. Yüksek yatay veya yüzey paralel basınç gerilmesi, bölgesel tektonik veya topoğrafik gerilmelerin yanı sıra aşırı yükün erozyonu veya kazılması sonucu ortaya çıkabilir.

Saha kanıtları ve oluşum, kırılma modu ve ikincil formların gözlemleri göz önüne alındığında, yüksek yüzey-paralel sıkıştırma gerilmeleri ve uzama çatlaması, (eksenel bölünme) pul pul dökülme eklemlerinin oluşumunu açıklayan en makul teori gibi görünmektedir.

Mühendislik jeolojisinin önemi

Eksfoliyasyon derzlerinin varlığını kabul etmek, Jeoloji mühendisliğinde önemli etkilere sahip olabilir. En dikkat çekici olanı, eğim stabilitesi üzerindeki etkileri olabilir. Eğimli vadi duvarlarının, ana kaya yamaçlarının ve uçurumların topoğrafyasını takip eden pul pul dökülme derzleri, özellikle kaymaya eğilimli Kaya blokları oluşturabilir. Özellikle eğimin ayak parmağı alttan kesildiğinde (doğal olarak veya insan aktivitesi ile), derzin derzin sürtünme açısını aşması durumunda derzin eksfoliyasyon düzlemleri boyunca kayma olasılığı yüksektir. Temel çalışmaları, örneğin barajlar [18] durumunda, pul pul dökülme eklemlerinin varlığından da etkilenebilir. Bir baraj temelinin altında yatan pul pul dökülme derzleri önemli bir sızıntı tehlikesi yaratabilirken, derzlerdeki artan su basıncı barajın kaldırılmasına veya kaymasına neden olabilir. Son olarak, pul pul dökülme derzleri, yeraltı suyu akışı ve kirletici maddelerin taşınması üzerinde güçlü bir yön kontrolü sağlayabilir.

Ayrıca bakınız

Kaynakça

  1. ^ a b c d e "Gilbert, G.K. (1904)." "Yüksek Sierra'nın kubbeleri ve kubbe yapıları". Amerika Jeoloji Derneği bülteni. 15: 29–36. 2 Ekim 2020 tarihinde kaynağından arşivlendi. 
  2. ^ a b c "Matthes, F. E. (1930). "Yosemite Vadisi'nin jeolojik tarihi". ABD jeolojik araştırma Uzmanı. 160.". 8 Ağustos 2018 tarihinde |arşiv-url= kullanmak için |url= gerekiyor (yardım) arşivlendi. 
  3. ^ a b c d e f g h i Goodman, R. E. (1993). Mühendislik Jeolojisi. New York: John Wiley ve oğulları.
  4. ^ a b c Dale, T. N. (1923). "New England'ın ticari granitleri". Amerika Birleşik Devletleri Jeolojik Araştırma Bülteni. 738.
  5. ^ a b c d Jahns, R. H. (1943). "Granitlerde sac yapılar". Jeoloji Dergisi. 51 (2): 71–98. Bibcode: 1943JG.....51...71J 9 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. . doi: 10.1086 26 Nisan 2021 tarihinde Wayback Machine sitesinde arşivlendi. / 625130.
  6. ^ a b c d e Holzhausen, G. R. (1989). "Yaprak yapısının kökeni, 1. Morfoloji ve sınır koşulları". Mühendislik Jeolojisi. 27 (1–4): 225–278. doı:10.1016/0013-7952(89) 90035-5.
  7. ^ a b Bahat, D.; Grossenbacher, K.; Karasaki, K. (Ocak 1999). "Yosemite Milli Parkı, granit kayaçlarda eksfoliyasyon eklem oluşum mekanizması". Yapısal Jeoloji Dergisi. 21 (1): 85–96. Bibcode: 1999JSG....21...85B. 9 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. doi:10.1016/s0191-8141(98)00069-8. 9 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. ISSN 0191-8141. 29 Kasım 2020 tarihinde Wayback Machine sitesinde arşivlendi.
  8. ^ a b Mandl, G. (2005). Kaya Eklemleri. Berlin: Springer-Verlag. ISBN 9783642063916.
  9. ^ a b Bradley, W. C. (1963). "Colorado Platosu'nun büyük kumtaşlarında büyük ölçekli pul pul dökülme". Amerika Jeoloji Derneği Bülteni. 74 (5): 519–527. doi.:8 Ocak 2021 tarihinde Wayback Machine sitesinde [https://web.archive.org/web/20210108160226/https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/74/5/519/5598/Large-Scale-Exfoliation-in-Massive-Sandstones-of?redirectedFrom=fulltext arşivlendi. 10.1130/0016-7606(1963)74[519: LEİMSO]2.0.CO; 2.]
  10. ^ a b c d e f Twidale, C. R 30 Kasım 2021 tarihinde Wayback Machine sitesinde arşivlendi. . (1973). "Sac bağlantısının kökeni hakkında." Kaya mekaniği ve kaya Mühendisliği. 5 (3): 163–187. Bibcode: 1973RMFMR...5..163t 8 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. . doi:10.1007 / BF01238046 8 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. .
  11. ^ a b Romani, J. R.; Twidale, C. R. (1999). "Yaprak kırıkları, diğer stres formları ve bazı mühendislik etkileri". Jeomorfoloji. 31: 13–27. Bibcode: 1999Geomo..31...13V. 9 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. doi: 10.1016/S0169-555X(99)00070-7. 9 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi.
  12. ^ a b Wolters, R. (1969). "Zur cause der Entstehung oberfläller Klüfte". Kaya mekaniği ve kaya Mühendisliği. 1 (1): 53-70. Bibcode:1969rmfmr...1...53w 9 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. . doı:10.1007 / BF01247357 9 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. .
  13. ^ Blackwelder, E. (1927). "Kaya ayrışmasında bir ajan olarak ateş". Jeoloji Dergisi. 35 (2): 134–140. Bibcode: 1927JG.....35..134B. 9 Ocak 2021 tarihinde Wayback Machine sitesinde arşivlendi. doi:10.1086 / 623392
  14. ^ Brunner, F. K.; Scheidegger, A. E. (1973). "Exfoliyasyon". "Pul pul dökülme". Kaya Mekaniği. 5 (1): 43-62. doi:10.1007/bf01246756. ISSN 0035-7448. 
  15. ^ Gramberg, J. (1989). Kaya mekaniği ve kırılma mekaniği üzerine geleneksel olmayan bir görünüm. A. A. Balkema.
  16. ^ Hoek, E.; Bieniawski, Z. T. (1965). "Sıkıştırma altında kayada kırılgan kırık yayılımı". Uluslararası kırık Mekaniği Dergisi. 1 (3): 137–155.
  17. ^ Fairhurst, C.; Cook, N. G. W. (1966). "Bir yüzeyin mahallesindeki maksimum sıkıştırma yönüne paralel olarak Kaya bölme olgusu". Bildiriler 1. Kongre, Uluslararası Kaya Mekaniği Derneği: 687-692.
  18. ^ Terzaghi, Karl (1962). "Dam Foundation on Sheeted Granite". Géotechnique. 12 (3): 199-208. doi:10.1680/geot.1962.12.3.199. ISSN 0016-8505. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Ada</span> çevresi bütünüyle sularla çevrili kara parçası

Ada, çevresi bütünüyle sularla çevrili kara parçasına verilen addır. Yeryüzündeki adaların bütünü on milyon kilometrekarelik bir yer kaplar. Adalar, tek tek olabileceği gibi, gruplar halinde de olabilir. Bu şekildeki adalara “takımada” adı verilir. Yarımada ise suyla çevrili, ancak bir tarafından ana kara parçasına bağlı bulunan coğrafi şekildir. Yer bilimi açısından adalar, kıtasal adalar ve okyanus adaları olmak üzere temelde ikiye ayrılır. Yüzen adalar ise yeni bir yer bilimi konusudur.

<span class="mw-page-title-main">Geoteknik</span>

Geoteknik, bilimsel metotlar ve mühendislik prensipleri kullanılarak zemin tabakasının ve malzemelerin özelliklerinin elde edilmesi, tahmin edilmesi ve bu bilgilerin mühendislik problemlerinde kullanılması uygulamasıdır. Zeminin ve çeşitli zemin malzemelerinin davranışlarını tahmin etmeye çalışarak, zemini insanlar için yaşanabilir hale getirme bilimidir. İnşaat mühendisliği disiplini içinde yer alır.

<span class="mw-page-title-main">Dayanım</span>

Dayanım ya da mukavemet, cisimlerin çeşitli dış etkiler ve bu dış etkilerin neden olduğu iç kuvvetler karşısında gösterecekleri davranış biçimini inceleyen bilim dalıdır. Mekanik biliminin bir alt kolu olan mukavemet bilimi rijit olmayan cisimlerin mekaniği olarak da tanımlanabilir. Rijit cisimler mekaniği, cisimlerin üzerlerine etkiyen dış tesirler ile şekillerini değiştirmediğini kabul ederken, rijit olmayan cisimler mekaniği şekil değiştirmeleri de göz önüne alır. Teori, yapının bir ya da iki boyutlu öğelerinin incelenip, sonra bunların gerilim düzeylerinin iki boyutlu ve üç boyutlu olarak varsayılıp üç boyuta genelleştirilmesi ve maddelerin elastik ve plastik davranışları hakkında daha tam bir teori geliştirilmesiyle başlamıştır. Maddelerin mekaniğinin önemli kurucu ve öncülerinden biri Stephen Timoshenko’dur.

<span class="mw-page-title-main">Dünya'nın yerkabuğu</span> Dünyanın dış tabakası

Yer kabuğu, taş küre veya litosfer, Yerküre'nin en dış kısmında bulunan yapıdır.

<span class="mw-page-title-main">Kristal</span>

Kristal, billur ya da kesme cam, kimyadaki katı haldeki bir elementin veya bileşiğin, molekül, atom veya iyon yığınlarının (paketinin) kesin geometrik bir yapı göstermesidir.

Fay ya da kırık, iki kıta sahanlığının birbirlerine sürtünerek zıt yönlerde hareketleri sonucu oluşan yapıya verilen isimdir. Kırıkların uzunlukları boyunca jeolojik tabakalar iki ayrı blok halinde yer değiştirir. Buradaki "kırık" terimi çatlaklarla karıştırılmamalıdır. Zira çatlaklarda kırılma yüzeyleri boyunca bir yer değiştirme, bir kayma söz konusu değildir. Bir çatlağın fay olabilmesi için fay aynası, tavan ve taban blokları ve atıma gerek vardır.

<span class="mw-page-title-main">Kayaç</span> doğal olarak oluşan mineral agregası

Kayaç, çeşitli minerallerin veya mineral ve taş parçacıklarının bir araya gelmesinden ya da bir mineralin çok miktarda birikmesinden meydana gelen katı birikintilerdir. Kayaç terimi eski Türkçede sahre, yeni Türkçede külte ve yabancı dillerdeki rock, roche, gestein sözcükleri karşılığı kullanılmaktadır.

<span class="mw-page-title-main">Granit</span>

Granit, sert, kristal yapılı minerallerden meydana gelen tane görünüşlü magmatik felsik müdahaleci magmatik bir kaya türüdür. Granit kelimesi, tamamen kristalli bir kayanın kaba taneli yapısında bulunan Latince granumdan gelir. Plüton içindeki taneler çoğunlukla gözle görülebilir büyüklüktedir. Feldispatın esas mineralleri ortoklas cinsi ile az miktarda plajioklas ve kuvarstır. Ayrıca mika, hornblend, piroksen ve ikinci gruba giren turmalin, apatit, zirkon, grena, manyetit gibi mineraller de bulunabilir. Ancak genellikle "granit" terimi daha geniş bir yelpazede ifade etmek için kullanılır.

<span class="mw-page-title-main">Kanat</span> hayvan ya da cansız bir objenin uçmasını sağlayan organ ya da parça

Kanat, uçma veya hareket etme amacıyla kullanılan ve genellikle kuşlar, böcekler veya uçaklar gibi hayvanlar veya araçlar tarafından kullanılan bir yapıdır. Kanatlar, aerodinamik prensiplere dayalı olarak tasarlanmış ve şekillendirilmiştir, böylece hava akışını kontrol ederek uçuş veya hareket sağlayabilirler. Kanat belli bir evrimsel ve biyolojik süreç sonrası oluşabilmesinin yanı sıra beşeri olarak da modellenebilip uçmak veya bir sıvı içerisinde hareket sağlamak için de özelleştirilebilmektedir.

<span class="mw-page-title-main">Bazalt</span>

Bazalt, volkanik kaya kütlelerinden biri. Siyah renkte ve kesif yığınlar halindedir. Doğada kütle, damar ve akıntı halinde bulunur. Başlıca özelliklerinden birisi, altıgen prizmalar biçiminde, büyük sütunlar meydana getirmesidir. Bu sütunlar, mağma akıntılarının soğuyup büzülmesinden ileri gelmiştir. Sert ve dayanıklı bir taş olduğundan kaldırım, yapı taş, demiryolu, köprü malzemesi olarak kullanılır. Yeryüzünde çok bol olan bazalt, bazı memleketlerde, binlerce kilometrekarelik yerleri örter. Birleşik Krallık'ın kuzeyi, İrlanda, Almanya ve Amerika Birleşik Devletleri'nde büyük Hindistan'da Dekkan bölgesindeki bazalt yığınları 300.000 kilometrekarelik geniş bir bölgeyi kaplar.

<span class="mw-page-title-main">Başkalaşım kayaçları</span> Isı ve basınca maruz kalan kaya

Başkalaşım kayaçları ya da metamorfik kayaçlar, magmatik ve tortul kayaçların çeşitli etkilerle değişime uğraması sonucu oluşurlar. Mermer, başkalaşım kayaçlarına bir örnek olarak verilebilir. Gnays, elmas ve şist de bu kayaçlara verilebilecek diğer örneklerdir.

<span class="mw-page-title-main">Magma</span> yeraltında bulunan, erimiş haldeki kayaçlar

Magma, yeraltında bulunan, ergimiş haldeki kayaçlar. Kayaçların basınç düşmesi, sıcaklık yükselmesi, H2O ilavesi gibi etkenler altında erimesi sonucu oluşan silikat hamuru durumundaki eriyiklerdir. Yeryüzüne ulaşarak yanardağlardan püsküren magmaya lav denir. Magma, dünya yüzeyinin altında bulunur ve diğer karasal gezegenlerde ve bazı doğal uydularda da magmatizmanın kanıtı keşfedilmiştir. Erimiş kayanın yanı sıra, magma ayrıca kristaller ve volkanik gazlar içerebilir.

Yansıma, homojen bir ortam içerisinde dalgaların yansıtıcı bir yüzeye çarparak yön ve doğrultu değiştirip geldiği ortama geri dönmesi olayına denir. Yansımanın genel örnekleri ışık, ses ve su dalgalarıdır. Düzlem aynalarda yansıma, saydam ortamda hareket eden ışığın herhangi bir yüzeye çarpıp geri dönmesi olayıdır. Yansıma olayında ışığın hızı, frekansı, rengi yani hiçbir özelliği değişmez. Sadece hareket yönü değişir.

<span class="mw-page-title-main">Hidrostatik</span>

Akışkan statiği ya da hidrostatik, hareketsiz akışkanlar üzerinde çalışmalar yapan akışkan mekaniğinin dalı. Hangi akışkanların durağan dengede hareketsiz kaldığıyla ilgili yapılan çalışmaları kabul eder ve akışkan dinamiğiyle karşılaştırıldığında hareket halindeki akışkanları inceler.

Foliasyon (Yapraklanma), kayaç içindeki minerallerinin fiziksel olarak mika ve kille yeniden düzenlenmesi ile de meydana getirilebilir.

<span class="mw-page-title-main">Ayrışma (jeoloji)</span>

Ayrışma, çözünme veya günlenme, yerkabuğunu oluşturan kayaçların yüzey kısımlarında fiziksel ve kimyasal etkenlerle meydana gelen değişimlerdir. Bu etkenlerin yanında atmosferdeki gazlar, sıcaklık, su, organizmalar da ayrışmada etkilidir.

<span class="mw-page-title-main">Milonit</span>

Milonit, güçlü sünek deformasyon için kanıt gösteren ve normalde matristeki minerallere benzer bileşime sahip yuvarlatılmış porfiroklast ve litik parçalar içeren, yapraklanmış ve genellikle çizgisel bir kayadır.

<span class="mw-page-title-main">Regolit</span>

Regolit, kayayı kaplayan gevşek, heterojen maddedir. İçerisinde toz, toprak, kırık kaya ve buna benzer maddeler bulundurur. Dünya, Ay, Mars ve bazı asteroitlerde bulunur.

<span class="mw-page-title-main">Tane boyu</span>

Tane boyutu münferit tortu tanelerinin çapı veya kırıntılı kayaçlardaki lithified parçacıklardır. Terim ayrıca diğer zerre şekilli malzemelere de uygulanabilecektir. Bu, bir parçacık veya tahıl içindeki tek bir kristalin boyutunu ifade eden kristalit boyutundan farklıdır. Tek bir tane birkaç kristalden oluşabilir. Granül malzeme çok küçük kolloidal parçacıklardan kil, silt, kum, çakıl ve parke taşlarından kayalara kadar değişebilir.

<span class="mw-page-title-main">Kırılma Mekaniği</span> Malzemelerin yüzeyi ve iç yüzeyindeki çatlakların davranışlarını inceleyen mühendislik dalı.

Kırılma mekaniği, malzemelerdeki çatlakların yayılmasının incelenmesiyle ilgili mekanik alanıdır. Bir çatlak üzerindeki itici kuvveti hesaplamak için analitik katı mekaniği yöntemlerini ve malzemenin kırılmaya karşı direncini karakterize etmek için deneysel katı mekaniği yöntemlerini kullanır.