İçeriğe atla

Einstein tensörü

Differansiyal geometri içerisinde, (Einstein Tensör adı Albert Einstein'dan gelmektedir; ayrıca iz-ters olarak Ricci Tensör olarak bilinmektedir). gerçek olmayan Riemannia çok katlılarını ifade etmek için kullanılan eğriliktir. Genel Görelikte içerisinde, Einstein Tensör’ünün ortaya çıkardığı Einstein’nın alan denklemlerinin kütleçekimi için tanımladığı uzay-zaman eğriliğini tutarlı bir şekilde enerji ile açıklamasıdır.

Tanım

Einstein tensörü 2 dereceden tensör üzerinde tanımlanan Gerçek olmayan riemania çok katlılarında indeks serbest notasyonunda tanımlanır.

Burada Ricci tensörü, g metrik tensör ve R skaler eğriliktir. Bileşen formda, önceki denklem gibi okunur.

Einstein Tensör’ü simetriktir. Yani transpozu yine kendisine eşittir.

 ve stres enerji tensörü gibi farksız 

Açık biçim

Ricci tensörü sadece metrik tensöre bağlıdır. Böylece Einstein tensör sadece metrik tensör ile doğrudan tanımlanabilir. Ancak, bu ifade karmaşık ve alıntıdır ders kitapların içerisinde. Christoffel sembolleri bu ifadenin karmaşıklığı bakımından Ricci tensörü için formül kullanılarak gösterilebilir. Christoffel sembolleri:

nerede olduğunu Kronecker tensör ve Christoffel sembolü olarak tanımlanır.

Sadeleştirmeden önce, bu formül sonuçları bireysel terimlerin içerisindedir.

Yerel özel durumda atalet referans çerçevesine bir nokta yakınında, metrik tensör ilk türevleri kaybolur ve Einstein tensörü bileşeni formu ölçüde basitleştirilmiş:

Nerede geleneksel köşeli parantezler asimetrik olarak gösterilen yani üzerinde parantez endeksleriyle

İz

Iz Einstein tensörün tarafından hesaplanabilir sözleşme denklem tanımı ile metrik tensör içinde (keyfi imzanın) boyutları:

Fizikte 4 boyutlarının özel bir durumunu (3 uzay, 1 zaman) verir. Einstein tensörünün izi, negative olarak Ricci tensörü izi gibi. Diğer bir isimde Einstein Tensörü için iz-ters Ricci Tensörüdür.

Genel Görelikte kullanım

Einstein tensörü Einstein’nın alan denklemlerine olanak veriyor. Tabi evren sabiti haric tutularak, özlü bir biçimde yazıldığında

Geometrik açıdan ele alınmış birimlere olanak verir. (Örneğin, c = G (Newton'un yerçekimi sabiti ve Einstein tensörü iz değil) = 1 yani)

Einstein tensörü açık formundan, Einstein tensörü bir metric tensörün doğrusal olmayan fonksiyonudur. Ama ikinci türevini aldığımızda doğrulsal olduğunu göreceğiz. Einstein tensör 4 boyutlu uzayda 10 bağımsız bileşeni vardır.

Einstein alan denklerimi Bianchi kimlikler otomatik kovaryant korunmasını sağlamak stres enerji tensörü kavisli uzay zamanlar içinde:

Bianchi kimliklerde kolayca Einstein tensörü yardımıyla ifade edilebilir:

Bianchi kimlikler otomatik kovaryant korunmasını sağlamaktadır ve stres enerji tensörü kavisli uzay zamanlar içinde:

  Einstein tensörü fiziksel önemi bu kimlik ile vurgulanır. Hassasiyeti azaltılmış gerilme tensörü açısından bir üzerinde sözleşmeli Öldüren vektörü  Sıradan bir koruma yasası tutar:
.

Teklik

David Lovelock 4 boyutta diferansiyellenebilen katmanları gösterdi. Einstein Tensörü ise sadece tensörel ve uzaklaşma-serbest fonksiyonu ve birincil, ikincil kismi türeblerde gösterdi.

Ancak, Einstein alan denklemleri üç koşulları karşılayan tek denklem değildir:

  1. 1. Benzerler ama genelleme Newton-Poisson denklemi yerçekimi için
  2. 2. Koordinat sistemleri tümü için geçerlidir
  3. 3. Herhangi bir metrik tensör için enerji-momentum yerel kovaryant korunmasını garanti eder.

Birçok alternatif teoriler gibi, öne sürülmüştür Einstein-Cartan teori de yukarıdaki koşulları yerine vb ....

Ayrıca bakınız

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

<span class="mw-page-title-main">Del işlemcisi</span>

Yöney analizinde del işlemcisi, 3 boyutlu Kartezyen koordinatlarda nabla işlemcisine denk gelir ve simgesiyle gösterilir.

<span class="mw-page-title-main">Otoregresif koşullu değişen varyans</span>

Otoregresif koşullu değişen varyans, ekonometri'de otoregresif koşullu değişen varyans modeli;r cari dönemdeki hata teriminin varyansının, önceki dönemdeki hata terimlerinin varyansının bir fonksiyonu olduğunu varsayar. Model, Robert F. Engle tarafından geliştirilmiştir.

Otoregresif hareketli ortalamalar modelleri, istatistik biliminde George Box ve Gwilym Jenkins'e ithafen Box-Jenkins modelleri olarak da bilinen zaman serisi kestirimi ve öngörme yöntemi olup eşit zaman aralıklarında gözlenen zaman serisi verilerinde uygulanır.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

Einstein alan denklemleri ya da Einstein denklemleri, yüksek hız ve büyük kütlelerde geçerli olan uzayzamanın geometrisi ile enerji ve momentum dağılımını ilişkilendiren doğrusal olmayan diferansiyel denklemler kümesidir. Einstein, bu denklemleri ilk kez 1915 yılında yayımlamıştır.

Yılmaz kütleçekim kuramı, Türk teorik fizikçi Hüseyin Yılmaz (1924-2013) tarafından ortaya atılan ve daha sonra birkaç kişinin de birlikte katkı verdiği, düşük çekimli alanlarda Einstein'ın genel görelilik kuramı ile örtüşen ancak olay ufkuna izin vermeyen dolayısıyla da karadelik içermeyen klasik alanlı bir çekim kuramıdır.

Fermi-Dirac istatistikleri, fizik biliminin bir parçası olarak Pauli dışlama prensibine uyan eş parçacıkları içeren sistemdeki bir parçacığın enerjisini tanımlar. Birbirlerinden bağımsız olarak bunu keşfeden Enrico Fermi ve Paul Dirac'tan sonra adlandırılmıştır.

<span class="mw-page-title-main">Hareket eden mıknatıs ve iletken problemi</span> düşünce deneyi

Hareketli mıknatıs ve iletken problemi 19. yüzyılda ortaya çıkan, klasik elektromanyetizma ve özel görelilik kesişimi ile ilgili ünlü bir düşünce deneyidir. Mıknatısa göre sabit hız (v) ile hareket eden iletkendeki akım, mıknatısın ve iletkenin referans sistemlerinde hesaplanır. "Sadece "göreli" hareket gözlemlenebilir, diğerlerinin mutlak bir standardı yoktur." diye belirten temel görelilik ilkesi doğrultusunda, deneydeki gözlemlenebilir miktar olan akım, her durumda aynıdır. Ancak, Maxwell denklemlerine göre, iletkendeki yük, mıknatıs referans sisteminde "manyetik kuvvete" ve iletken referans sisteminde "elektrik kuvvetine" maruz kalır. Aynı olgu, gözlemcinin referans sistemine bağlı olarak iki farklı tanımları var gibi görünebilir.

Fizikte, Lorentz dönüşümü adını Hollandalı fizikçi Hendrik Lorentz'den almıştır. Lorentz ve diğerlerinin referans çerçevesinden bağımsız ışık hızının nasıl gözlemleneceğini açıklama ve elektromanyetizma yasalarının simetrisini anlama girişimlerinin sonucudur. Lorentz dönüşümü, özel görelilik ile uyum içerisindedir. Ancak özel görelilikten daha önce ortaya atılmıştır.

<span class="mw-page-title-main">Sicim kozmolojisi</span>

Sicim kozmolojisi, ilk kozmolojinin sorularını sicim kuramındaki eşitlikleri uygulayarak çözmeye çalışan yeni bir alandır.Çalışmaların bağlantılı bölgesi brane kozmolojisidir. Bu yaklaşım sicim kuramının şişme kozmolojik modelinden türetilebilir, bu sayede ilk büyük patlama senaryolarına kapı açılmıştır. Fikir, eğimli bir arka planda bozonik sicim özelliği ile bağlantılıdır, düzgün olmayan sigma modeli olarak bilinir. Bu modelin ilk işlemleri beta işlevi olarak gösterilir, modelin sürekli ölçünü bir enerji düzeyinin işlevi olarak nitelendirir, Ricci tensörü ile orantılı olmakla birlikte Ricci akışına da mahal vermiştir. Bu model konformal değişmeze sahip olduğundan mantıklı bir kuantum alan kuramı olarak tutulmalı, beta işlevi ise ardından, hemen sıfır üreten Einstein alan eşitliği olmalıdır. Einstein’ın eşitlikleri bir şekilde yersiz görünse de, bu sonuç kesinlikle iki-boyutlu modelin daha fazla boyutlu fizik üretebileceğini göstermesi açısından dikkat çekicidir. Buradaki ilgi çekici nokta ise sicim kuramı gereksinim olmasa da düz bir arka plandaki tutarlıkla 26 boyut olarak formulize edilebilir. Bu Einstein’ın eşitliklerinin altında yatan fiziğin konformal alan kuramı ile açıklanabileceğine dair ciddi bir ipucudur. Aslında, bu sicim kozmolojisi için şişmeci bir evrene sahip olduğumuza dair bir kanıtımız olduğuna işarettir.Evrenin evriminde, şişme evresinden sonra, bugün gözlemlenen genişleme Firedmann eşitliklerinde tam anlamıyla tanımlanmıştır. İki farklı evre arasında pürüzsüz bir geçiş beklenir. Sicim kozmolojisi, geçişi açıklamakta zorluk çeker. Bu sözlükte zarif çıkış problemi olarak bilinir. Şişmeci kozmoloji skaler alanın varlığının şişmeyi zorladığını ima eder. Sicim kozmolojisinde bu durum dilaton alanına mahal verir.. Bu skaler ifade, düşük enerjilerin efektif kuramı olan skaler alanın bozonik sicimin tanımına girer. Bu eşitlikler Brans-Dicke kuramındakilere benzer. Nicel çözümlenimler boyutların kritik sayısını, (26), dörde düşürmeye çalışır. Genel olarak, Friedmann eşitliklerinden rastgele sayıda boyut elde edilebilir. Başka bir durum ise boyutların kesin sayısı etkili dört boyut kuramı ile çalışarak sıkıştırılmış evrenleri üretir. Sıkıştırılmış boyutlarda skaler alanların oluştuğu Kaluza-Klein kuramı buna bir örnektir. Bu alanlara modili denir.

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

Palatini özdeşliği, genel görelilik ve tensör hesabında;

şeklindeki ifadedir.

Kerr–Newman metriği genel relativitide yüklü, dönen kütlelerin çevresindeki uzay zaman geometrisini tarif eden Einstein–Maxwell denklemlerinin çözümüdür. Bu çözüm astrofizik alanındaki fenomenler için pek faydalı sayılmaz çünkü gözlemlenebilen astronomik objeler kayda değer net yük taşımazlar. Bu çözüm uygulama alanı yerine daha çok teorik fizik ve matematiksel ilginin bir sonucudur..

Einstein-Hilbert etkisi genel görelilikte en küçük eylem ilkesi boyunca Einstein alan denklemleri üretir. Hilbert etkisi genel görelilikte yerçekiminin dinamiğini tarifleyen fonksiyonel işlemdir. metrik işaretiyle, etkinin çekimsel kısmı,

<span class="mw-page-title-main">Stres-enerji tensörü</span>

Stres-enerji tensörü, fizikte uzayzaman içerisinde enerji ve momentumun özkütle ve akısını açıklayan, Newton fiziğindeki stres tensörünü genelleyen bir tensördür. Bu, maddedinin, radyasyonun ve kütleçekimsel olmayan kuvvet alanının bir özelliğidir. Stres-enerji tensörü, genel göreliliğin Einstein alan denklemlerindeki yerçekimi alanının kaynağıdır, tıpkı kütle özkütlesinin Newton yerçekiminde bu tip bir alanın kaynağı olması gibi.

Matematikte Radon-Nikodym teoremi, aynı ölçülebilir uzayda tanımlanmış iki ölçü arasındaki ilişkiyi ifade eden bir sonuçtur. Burada ölçü ile kastedilen ölçülebilir bir uzayın ölçülebilir alt kümelerine tutarlı bir büyüklük atayan bir küme fonksiyonudur. Ölçü örnekleri arasında alan ve hacim verilebilir.

MS 2. yüzyılda Mısır'da Yunan astronom, coğrafyacı ve jeolog Batlamyus tarafından oluşturulan kirişler tablosu, matematiksel astronomi üzerine bir inceleme olan Batlamyus'un Almagest adlı eserinin Kitap I, bölüm 11'inde yer alan bir trigonometrik tablodur. Esasen sinüs fonksiyonunun değer tablosuna eşdeğerdir. Astronomi de dahil olmak üzere birçok pratik amaç için yeterince kapsamlı olan en eski trigonometrik tablodur. 8. ve 9. yüzyıllardan beri sinüs ve diğer trigonometrik fonksiyonlar, İslam matematiği ve astronomisinde kullanılmış ve sinüs tablolarının üretiminde reformlar yapılmıştır. Daha sonra Muhammed ibn Musa el-Harezmi ve Habeş el-Hâsib bir dizi trigonometrik tablo üretmiştir.