İçeriğe atla

Eden varsayımı

Dinamik sistemler matematiğinde, Eden varsayımı, küresel çekim noktası üzerindeki yerel Lyapunov boyutlarının üstünlüğünün durağan bir noktada veya çekim noktasının içine gömülü kararsız bir periyodik yörüngede elde edildiğini belirtir.[1][2] Varsayımın geçerliliği, küresel çekiciye sahip bir dizi iyi bilinen sistem için kanıtlanmıştır (örneğin Lorenz sistemi,[3][4][5] karmaşık Ginzburg-Landau denklemindeki[6] küresel çekim noktaları için). Adını, 1987 yılında öneren Alp Eden'den almıştır.

Kuznetsov–Eden varsayımı

Yerel çekim noktaları için, N. Kuznetsov[7][8] tarafından geliştirilen öz-tahrikli çekim noktası'nın Lyapunov boyutu üzerine bir varsayım, tipik bir sistem için, öz-tahrikli bir çekim noktasının Lyapunov boyutunun, kararsız manifoldu çekim havzasıyla kesişen ve çekim noktasını görselleştiren kararsız dengelerden birinin Lyapunov boyutunu aşmadığını belirtmiştir. Bu varsayım, örneğin, klasik öz-tahrikli Lorenz çekim noktası için; Henon haritası'ndaki öz-tahrikli çekim noktaları için (çoklu kararlılık ve farklı Lyapunov boyutlarına sahip yerel çekim noktalarının bir arada bulunması durumunda bile) geçerlidir.[9][10] Bir gizli çekim noktası için varsayım, yerel Lyapunov boyutlarının maksimumunun çekicinin içine gömülü kararsız bir periyodik yörüngede elde edildiğidir.

Kaynakça

  1. ^ A. Eden (1989). An abstract theory of L-exponents with applications to dimension analysis. PhD thesis. Indiana University. 
  2. ^ Eden, A. (1989). "Local Lyapunov exponents and a local estimate of Hausdorff dimension". Modélisation Mathématique et Analyse Numérique. 23 (3): 405-413. doi:10.1051/m2an/1989230304051Özgürce erişilebilir. 
  3. ^ Leonov, G.; Lyashko, S. (1993). "Eden's hypothesis for a Lorenz system". Vestn. St. Petersbg. Univ., Math. 26 (3): 15-18. 
  4. ^ Leonov, G.A.; Kuznetsov, N.V.; Korzhemanova, N.A.; Kusakin, D.V. (2016). "Lyapunov dimension formula for the global attractor of the Lorenz system". Communications in Nonlinear Science and Numerical Simulation. 41: 84-103. arXiv:1508.07498 $2. Bibcode:2016CNSNS..41...84L. doi:10.1016/j.cnsns.2016.04.032. 
  5. ^ Kuznetsov, N.V.; Mokaev, T.N.; Kuznetsova, O.A.; Kudryashova, E.V. (2020). "The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension". Nonlinear Dynamics. 102 (2): 713-732. doi:10.1007/s11071-020-05856-4Özgürce erişilebilir. 
  6. ^ Doering, C.R.; Gibbon, J.D.; Holm, D.D.; Nicolaenko, B. (1987). "Exact Lyapunov dimension of the universal attractor for the complex Ginzburg–Landau equation". Physical Review Letters. 59 (26): 2911-2914. Bibcode:1987PhRvL..59.2911D. doi:10.1103/physrevlett.59.2911. PMID 10035685. 
  7. ^ Kuznetsov, N.V. (2016). "The Lyapunov dimension and its estimation via the Leonov method". Physics Letters A. 380 (25–26): 2142-2149. arXiv:1602.05410 $2. Bibcode:2016PhLA..380.2142K. doi:10.1016/j.physleta.2016.04.036. 
  8. ^ Kuznetsov, N.V.; Leonov, G.A.; Mokaev, T.N.; Prasad, A.; Shrimali, M.D. (2018). "Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system". Nonlinear Dynamics. 92 (2): 267-285. arXiv:1504.04723 $2. doi:10.1007/s11071-018-4054-z. 
  9. ^ Kuznetsov, N.V.; Leonov, G.A.; Mokaev, T.N. (2017). "Finite-time and exact Lyapunov dimension of the Henon map". arXiv:1712.01270 $2. 
  10. ^ Kuznetsov, Nikolay; Reitmann, Volker (2021). Attractor Dimension Estimates for Dynamical Systems: Theory and Computation. Cham: Springer. 3 Haziran 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 28 Mart 2023. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Jüpiter</span> Güneş Sisteminde yer alan en büyük gezegen

Jüpiter, Güneş Sistemi'nin en büyük gezegenidir. Güneş'ten uzaklığa göre beşinci sırada yer alır. Adını Roma mitolojisindeki tanrıların en büyüğü olan Jüpiter'den alır. Büyük ölçüde hidrojen ve helyumdan oluşmakta ve gaz devi sınıfına girmektedir.

<span class="mw-page-title-main">Genel görelilik</span> kütle-zaman ilişkisini tanımlayan teori

Genel görelilik teorisi, 1915'te Albert Einstein tarafından yayımlanan, kütleçekimin geometrik teorisidir ve modern fizikte kütle çekiminin güncel açıklamasıdır. Genel görelilik, özel göreliliği ve Newton'un evrensel çekim yasasını genelleştirerek, yerçekimin uzay ve zamanın veya dört boyutlu uzayzamanın geometrik bir özelliği olarak birleşik bir tanımını sağlar. Özellikle uzayzaman eğriliğine maruz kalmış maddenin ve radyasyonun, enerjisi ve momentumuyla doğrudan ilişkilidir. Bu ilişki, kısmi bir diferansiyel denklemler sistemi olan Einstein alan denklemleriyle belirlenir.

<span class="mw-page-title-main">Gezegen</span> bir yıldız veya yıldız kalıntısının yörüngesinde dolanan gök cismi

Gezegen, genellikle bir yıldızın, yıldız kalıntısının veya kahverengi cücenin yörüngesinde bulunan, yuvarlak hâle gelmiş bir astronomik cisimdir. Uluslararası Astronomi Birliğinin (IAU) tanımına göre Güneş Sistemi'nde sekiz gezegen bulunur. Bunlar, karasal gezegenler Merkür, Venüs, Dünya ve Mars; dev gezegenler Jüpiter, Satürn, Uranüs ve Neptün'dür. Gezegen oluşumu için bilimsel açıdan mevcut en iyi teori, bir bulutsunun kendi içine çökmesi sonucu bir yıldızlararası bulut meydana getirdiğini ve yıldızlararası bulutun da bir önyıldız ve bunun yörüngesinde dönen bir öngezegen diski oluşturduğunu öne süren bulutsu hipotezidir. Gezegenler bu disk içinde, kütleçekiminin etkisiyle maddelerin kademeli olarak birikmesi sonucu, yığılma (akresyon) olarak adlandırılan süreçte büyürler.

<span class="mw-page-title-main">İo (uydu)</span> Jüpiterin uydusu

İo veya Io, Jüpiter'in Galilei uydularından yörüngesi en içte bulunanı ve üçüncü en büyük olanıdır. Güneş Sisteminin en büyük dördüncü uydusudur. 1610 yılında Galileo Galilei tarafından keşfedilmiştir. Adını Yunan mitolojisinde Zeus'un sevgililerinden biri olan "Io" karakterinden alır. Güneş Sistemi'nde üzerinde sürekli olarak gazlar ve lav püskürten yanardağlar bulunan tek uydudur.

<span class="mw-page-title-main">Evren</span> uzay, zaman ve herşeyin bütünü

Evren, Kâinat veya Kozmos, gezegenler, yıldızlar, gökadalar ve diğer tüm madde ile enerji yapıları dahil olmak üzere uzay ve zamanın tamamı ve muhtevasıdır. Bununla birlikte gözlemlenebilir evren, temel parçacıklardan başlayarak gökadalar ve gökada kümeleri gibi büyük ölçekli yapılara kadar tüm madde ve enerjinin mevcut düzeniyle sınırlıdır.

<span class="mw-page-title-main">Newton'un evrensel kütleçekim yasası</span> Fizik kanunu

Newton'un evrensel çekim yasası (klâsik mekaniğin bir parçasıdır) aşağıdaki gibi ifade edilir;

Her bir noktasal kütle diğer noktasal kütleyi, ikisini birleştiren bir çizgi doğrultusundaki bir kuvvet ile çeker. Bu kuvvet bu iki kütlenin çarpımıyla doğru orantılı, aralarındaki mesafenin karesi ile ters orantılıdır:

Burada:

  • F iki kütle arasındaki çekim kuvvetinin büyüklüğü,
  • G Evrensel çekim sabiti 6.67 × 10-11 N m2 kg-2,
  • m1 birinci kütlenin büyüklüğü,
  • m2 ikinci kütlenin büyüklüğü,
  • r ise iki kütle arasındaki mesafedir.
<span class="mw-page-title-main">10199 Chariklo</span> Asteroit

10199 Chariklo, Satürn ve Uranüs arasında Uranüs'ün yörüngesine yakın şekilde Güneş etrafında dönen bir centaur gökcismidir. Centaur grubu içinde bilinen en büyük küçük gezegendir. 26 Mart 2014 tarihinde gök bilimciler bir yıldız örtülmesi gözlemleyerek Chariklo'nun etrafında iki halka keşfettiklerini duyurdular. Halkaları olduğu keşfedilen ilk küçük gezegendir.

<span class="mw-page-title-main">2060 Chiron</span> Asteroit

2060 Chiron, Dış Güneş Sistemi'nde Satürn ve Uranüs arasında yörüngede olan bir küçük Güneş Sistemi cismidir. Charles T. Kowal tarafından 1977 yılında keşfedilen cisim, Centaur cisimleri olarak bilinen yeni bir nesne sınıfının ilk tanımlanmış üyesidir. İlk önceleri asteroit olarak sınıflandırılmış ancak daha sonra aslında kuyruklu yıldız olduğu konusunda tartışma açılmıştır. Günümüzde her iki sınıfta da yer almaktadır. Chiron, adını Yunan mitolojisindeki centaur Chiron'dan almıştır.

<span class="mw-page-title-main">Apsis (astronomi)</span> Bir cismin yörüngesindeki en uzak ve en yakın nokta

Apsis, gök mekaniğinde, eliptik yörüngedeki bir cismin genelde sistemin kütle merkezi durumunda da olan çekim merkezine yörünge boyunca en yakın ve en uzak olduğu noktalara verilen addır.

<span class="mw-page-title-main">Güneş Sistemi'nin oluşumu ve evrimi</span>

Güneş Sistemi'nin oluşumu ve evrimi, yaklaşık 4,5 milyar yıl önce dev bir moleküler bulutun küçük bir parçasının yerçekimi etkisiyle çökmesiyle başladı. Çöken kütlenin çoğu, merkezde toplanarak Güneş'i oluştururken, geri kalanı düzleşerek gezegenlerin, uyduların, asteroitlerin ve diğer küçük gök cisimlerinin oluştuğu bir proto-gezegen diskine dönüştü.

<span class="mw-page-title-main">Gliese 876</span>

Gliese 876, Kova takımyıldızı yönünde yaklaşık olarak 15 ışık yılı uzaklıkta bulunan bir kırmızı cüce yıldızdır. 2011 yılında yıldızı yörüngeleyen dört güneş dışı gezegen onaylanmıştır. Orta gezegenlerin ikisi Jüpiter benzeri iken, en yakın gezegenin küçük bir Neptüne ya da geniş bir karasal gezegene benzediği, en dıştaki gezegeninse kütlece Uranüs'e benzediği düşünülmektedir.

<span class="mw-page-title-main">Dağınık disk</span>

Dağınık disk veya saçılmış disk, geniş Neptün ötesi cisimler ailesinin bir alt kümesi olarak genel itibarıyla buzlu küçük Güneş Sistemi cismi popülasyonuna sahip olan Güneş Sistemi'ndeki uzak bir çöküntü çemberidir. Dağınık disk cisimleri (SDO'lar-Scatterd Disk Objects) 0,8'e kadar değişen yörünge dışmerkezliklerine, 40°'ye kadar yüksek eğimlere ve 30 astronomik birim (4,5×109 km; 2,8×109 mi) daha büyük günberi mesafelerine sahiptir. Bu aşırı yörüngelerin gaz devleri tarafından kütleçekimsel “saçılmanın” bir sonucu olduğu düşünülmektedir ve bu nesneler Neptün tarafından tedirgin edilmeye devam etmektedir.

<span class="mw-page-title-main">Geri ve ileri yönlü hareket</span> Bir astronomik cismin yörünge veya kendi ekseni etrafında, ana cismine göre ters yönde dönüşü

Geri yönlü hareket, genel olarak, astronomik bir nesnenin kütle çekimi altında bulunduğu birincil cismin dönüş yönüne göre tam tersi yönündeki yörünge veya dönme hareketi olarak tanımlanmaktadır. Ayrıca bir nesnenin dönme ekseninin salınımı veya üğrümü gibi diğer hareketleri de tanımlayabilir.

<span class="mw-page-title-main">Hyperion (uydu)</span> Satürnün uydusu

Hyperion, Satürn'ün doğal uydusudur. William Cranch Bond, George Phillips Bond ve William Lassell tarafından 1848 yılında keşfedildi. Düzensiz şekli, kaotik dönüşü ve açıklanamayan sünger benzeri görünümü ile dikkat çekicidir. Keşfedilen ilk yuvarlak olmayan uydudur.

<span class="mw-page-title-main">Dinamik sistem</span>

Bu sayfa dinamik sistemlere dair genel bakış açılarını içerir ayrıntılı bilgi için dinamik sistem (tanım) veya çalışmak amaçlı dinamik sistemler teorisine bakabilirsiniz.

19. yüzyılda, ışığın yayılması için varsayımsal aracı olarak esîr teorisi yaygın olarak tartışıldı. Bu tartışmanın önemli bir parçası, bu ortama göre Dünya'nın hareket durumu ile ilgili soru oldu. Esîr çekim hipotezi esîrin hareket eden madde tarafından çekildiği ya da birlikte sürüklendiği ile ilgilenir. İlk değişkene göre Dünya ve esîr arasında bağıl bir hareket yoktur; ikinciye göre bağıl hareket vardır ve böylece ışık hızı, Dünya yüzeyinde ölçülen hareket hızına("esîr rüzgarı") dayanır. Özgül esîr modellerini bulan Augustin-Jean Fresnel tarafından 1818 yılında esîrin maddeyle beraber sürüklendiğini önermiştir. Diğer model George Stokes tarafından 1845 yılından ortaya atılan esîrin maddenin içinde ya da civarında sürüklenmesidir.

<span class="mw-page-title-main">Centaur (küçük gezegen)</span>

Centaur, Güneş Sisteminin dış bölgesindeki gaz devleri Jüpiter ve Neptün gezegenleri arasında, tutarlı olmayan yörüngelerde bulunan bir küçük Güneş Sistemi cismidir. Bu cisimlerin yörüngelerindeki tutarsızlık, bir veya birden çok büyük gezegenin yörüngeleriyle kesişmelerinden kaynaklanır. Centaur'ların kendileri, kısa ömürlü kararsız yörüngelere sahiptir ve birkaç milyon yıl içinde Kuiper kuşağı nesnelerinin aktif olmayan popülasyonundan Jüpiter ailesi kuyruklu yıldızlarının aktif grubuna geçiş yaparlar.

<span class="mw-page-title-main">Hill küresi</span>

Hill küresi (yarıçapına Hill yarıçapı denir), bir gök cisminin, etrafında döndüğü daha büyük kütleli başka bir cismin tedirginliğine göre kütleçekimsel etki alanının hesaplanmasında kullanılan yaygın bir modeldir. Bir astronomik cismin (m), diğer cisimlerin, özellikle de birincil cisim (M) üzerindeki kütleçekim etkisini hesaplamak için yaygın olarak kullanılan bir modeldir. Bazen, Laplace küresi ya da Roche küresi olarak adlandırılan diğer kütleçekim etkisi modelleriyle karıştırılır. Roche küresi adıyla anıldığında Roche limiti ile karışıklığa neden olur. Amerikalı astronom George William Hill tarafından Fransız astronom Édouard Roche'un çalışmalarına dayanılarak tanımlanmıştır.

<span class="mw-page-title-main">Çakıl birikimi (astronomi)</span>

Çakıl birikimi, çapı santimetreden metreye kadar değişen parçacıkların, diskte bulunan gazdan kaynaklanan aerodinamik sürükleme ile güçlendirilen bir protogezegensel diskte gezegenimsiler halinde birikmesidir. Bu sürükleme, küçük cisimlerin bazılarının daha büyük cisimlerin yanından geçerken göreceli hızlarını azaltarak kütle çekiminden kaçmasını engeller. Bu taşlar daha sonra spiral çizerek ya da çeken cismin yüzeyine doğru yerleşerek birikir. Bu süreç, büyük cisimlerin malzeme biriktirebileceği alanı artırarak büyümeyi hızlandırır. Gezegenimsi cisimlerin bu yolla hızlı büyümesi, gaz diskinin dağılmasından önce dış Güneş Sistemi'nde dev gezegen çekirdeklerinin oluşmasını sağlar. Buz çizgisini geçtikten sonra su buzunu kaybeden çakıl taşlarının boyutlarındaki azalma ve Güneş'ten uzaklaştıkça azalan gaz yoğunluğu, iç Güneş Sistemi'ndeki çakıl taşı yığılma oranlarını yavaşlatarak daha küçük karasal gezegenlerin, küçük kütleli Mars cisimlerinin ve düşük kütleli asteroit kuşağının oluşmasına neden olur.

<span class="mw-page-title-main">624 Hektor</span> Asteroit

624 Hektor, en büyük Jüpiter truvalısı ve Hektor ailesi'nin isim babasıdır, hacim olarak yaklaşık 225 ila 250 kilometre çapında, küreye eşdeğer, oldukça uzun bir şekle sahiptir. Gök bilimci August Kopff tarafından 10 Şubat 1907'de Almanya'nın güneybatısındaki Heidelberg Gözlemevi'nde keşfedilmiş ve Yunan mitolojisindeki Truva prensi Hektor'un adıyla anılmıştır. 2006 yılında keşfedilen 12 kilometre büyüklüğünde küçük bir uyduya, sahiptir. Bu uyduya ise Skamandrios adı verilmiştir.