Isı sığası veya ısı kapasitesi, bir maddenin sıcaklığını 1 °C değiştirmek için gerekli olan ısı miktarıdır. Başka bir ifade ile bir cismin ısısının sıcaklığına göre türevidir. Cismin kütlesi ile öz ısısının çarpımına eşittir (m.c).
Isı iletimi ya da kondüksiyon, madde veya cismin bir tarafından diğer tarafına ısının iletilmesi ile oluşan ısı transferinin bir çeşididir.
Isı iletkenlik ya da termal iletkenlik, fizikte malzemenin ısı iletim kabiliyetini anlatan bir özelliktir. k harfi ile ifade edilir.
Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.
Elektrokimya, kimya biliminin bir alt dalı olup elektronik bir iletken ile iyonik bir iletken (elektrolit) arayüzeyinde gerçekleşen reaksiyonları inceler. Elektrokimyada amaç kimyasal enerji ve elektrik enerjisi arasındaki değişimi incelemektir.
Termodinamiğin(Isıldevinimin) ikinci yasası, izole sistemlerin entropisinin asla azalamayacağını belirtir. Bunun sebebini izole sistemlerin termodinamik dengeden spontane olarak oluşmasıyla açıklar. Buna benzer olarak sürekli çalışan makinelerin ikinci kanunu imkânsızdır.
Akım Fonksiyonu, eksen simetrisi ile üç boyutta olduğu kadar iki boyutta sıkıştırılamaz akışlar için tanımlanır. Akış hızı bileşenleri, skaler akış fonksiyonunun türevleri olarak ifade edilebilir. Akım fonksiyonu, kararlı akıştaki partiküllerin yörüngelerini gösteren akım çizgileri, çıkış çizgileri ve yörüngeyi çizmek için kullanılabilir. İki boyutlu Lagrange akım fonksiyonu, 1781'de Joseph Louis Lagrange tarafından tanıtıldı. Stokes akım fonksiyonu, eksenel simetrik üç boyutlu akış içindir ve adını George Gabriel Stokes'tan almıştır.
Enerji biçimleri, iki ana grubu ayrılabilir: kinetik enerji ve potansiyel enerji. Diğer enerji türleri bu iki enerji türünün karışımdan elde edilir.
Termal enerji, ortam veya sistem sıcaklığı sonucunda ortamdaki veya sistemdeki bir cismin veya maddenin potansiyel ve kinetik enerjileri toplamını ifade eden bir enerji biçimidir. Sistemde sıcaklık olmadığı müddetçe bu niceliği tanımlamak zor ve hatta anlamsız olabilir. Bu durumda herhangi bir termal iş söz konusu değildir.
Kimyada kimyasal enerji, pil, ampul ve hücre gibi bir kimyasal maddenin tepkime esnasındaki değişiminin potansiyelidir. Kimyasal bağ kurma veya koparma sonucu enerji açığa çıkar. Bu enerji bir kimyasal sistem tarafından ya emilir ya da yayılır.
Ekserji verimi, termodinamiğin ikinci kanununa göre verimliliği hesaplar. Bir tesisin, mekanizmanın veya sistemin oluşturduğu ve faydalı iş için gereken toplam ekserjilerin, yine aynı sistemdeki kütle akışı veya enerji kaynaklarının potansiyel ekserjilerinin toplamına oranını ifade eder.
Elektrokimyada Nernst denklemi, bir elektrokimyasal reaksiyonun indirgenme potansiyelini ; indirgeme ve oksidasyona uğrayan kimyasal türlerin standart elektrot potansiyeli, sıcaklığı ve aktiflikleri ile ilişkilendiren bir denklemdir. Denklemi formüle eden Alman fiziksel kimyacı Walther Nernst'in adını almıştır.
Termodinamik ve akışkanlar mekaniği gibi bilim dallarında kullanım alanı bulan iki çeşit Bejan sayısı (Be) bulunmaktadır. Bu sayılar, Adrian Bejan'ın adını taşımaktadır.
Euler sayısı (Eu), akışkan akışı hesaplamalarında kullanılan bir boyutsuz sayıdır. Bu sayı, yerel bir basınç düşüşü ile akışın birim hacim başına kinetik enerjisi arasındaki ilişkiyi ifade eder ve akıştaki enerji kayıplarını karakterize etmek için kullanılır. Mükemmel sürtünmesiz bir akış, Euler sayısının 0 olduğu duruma karşılık gelir. Euler sayısının tersi, sembolü Ru olan Ruark Sayısı olarak adlandırılır.
Marangoni sayısı (Ma), yaygın olarak tanımlandığı üzere, Marangoni akışları ile difüzyon taşıma hızını karşılaştıran bir boyutsuz sayıdır. Marangoni etkisi, sıvının yüzey gerilimindeki gradyanlardan kaynaklanan akışıdır. Difüzyon ise yüzey gerilimindeki gradyanı oluşturan maddenin yayılmasıdır. Bu nedenle, Marangoni sayısı akış ve difüzyon zaman ölçeklerini karşılaştıran bir tür Peclet sayısıdır.
Termal akışkan dinamiği alanında, Nusselt sayısı (Nu), Wilhelm Nusselt'in adını taşıyan ve bir sınır tabakasındaki toplam ısı transferinin, kondüksiyon ısı transferine oranını ifade eden bir boyutsuz sayıdır. Toplam ısı transferi, kondüksiyon ve konveksiyonu içerir. Konveksiyon ise adveksiyon ve difüzyon bileşenlerinden oluşur. Kondüktif bileşen, konvektif koşullar altında ancak hareketsiz bir akışkan için varsayılarak ölçülür. Nusselt sayısı, akışkanın Rayleigh sayısı ile yakından ilişkilidir.
Akışkanlar mekaniğinde, Rayleigh sayısı (Ra, Lord Rayleigh'e ithafen) bir akışkan için kaldırma kuvveti ilişkili bir boyutsuz sayıdır. Bu sayı, akışkanın akış rejimini karakterize eder: belirli bir alt aralıkta bir değer laminer akışı belirtirken, daha yüksek bir aralıktaki değer türbülanslı akışı belirtir. Belirli bir kritik değerin altında, akışkan hareketi olmaz ve ısı transferi konveksiyon yerine ısı iletimi ile gerçekleşir. Çoğu mühendislik uygulaması için Rayleigh sayısı büyük olup, yaklaşık 106 ile 108 arasında bir değerdedir.
Richardson sayısı (Ri), Lewis Fry Richardson (1881–1953) adını taşıyan boyansi teriminin akış kayma gerilmesi terimine oranını ifade eden bir boyutsuz sayı:
Stanton sayısı (St), bir akışkana aktarılan ısının akışkanın ısı kapasitesine oranını ölçen bir boyutsuz sayıdır. Stanton sayısı, Thomas Stanton (mühendis)'in (1865–1931) adına ithafen verilmiştir. Bu sayı, zorlanmış konveksiyon akışlarındaki ısı transferini karakterize etmek için kullanılır.
Stokes sayısı (Stk), George Gabriel Stokes'un adını taşıyan ve parçacıkların bir akışkan akışı içerisinde süspansiyonda gösterdiği davranışı karakterize eden bir boyutsuz sayıdır. Stokes sayısı, bir parçacığın karakteristik zamanı ile akışın veya bir engelin karakteristik zamanı arasındaki oran olarak şu şekilde tanımlanır: