İçeriğe atla

Ebu'l-Vefâ el-Bûzcânî

Ebu'l-Vefâ el-Bûzcânî
Ebu'l Vefa'nın temsili resim
Doğum10 Haziran 940
Buzgan Kasabası, İran
Ölüm1 Temmuz 998
Bağdad, Irak
Dinİslam
Kariyeri
EtkilendikleriBattani, Ebu Hanife Dinaveri
EtkiledikleriBirûni, Ebu Nasr Mansur

Ebu'l Vefa el-Buzcani (d. 10 Haziran 940 - ö. 1 Temmuz 998), İranlı matematikçi ve astronom.[1]

Tam adı 'Ebu el-Vefa Muhammed bin Muhammed bin Yahya bin İsmail bin el-Abbas el-Büzcani' olan alim 940 yılında İran'da bulunan Buzgan kasabasında doğmuştur. Bu yüzden 'Ebul Vefa Buzcani' diye meşhur olmuştur. İlim tahsiline amcası Ebu Amr Mugazili ve Ebu Yahya bin Kimib'in yanında başlayan Ebul Vefa, 959 yılında Bağdat'a gitti. Ölümüne kadar da orada bilimle meşgul oldu. Bilim sahasında, matematik bilimini tahsil etti ve özellikle trigonometri üzerinde çalışmalar yaptı. Bu alanlarda çok fazla bir süre muhafaza edilemeyen kitaplar yazdı. Batlamyus'un ve Diophantos'un eserlerini inceleyip açıklamış, astronomi sahasında ise Ay'ın hareketleri üzerine çalışmalar yapmıştır. Matematik ve astronomideki hizmetleriyle bilim tarihinde önemli bir yer tutmuştur.

Astronomi

Ebu'l Vefa, yıldızların eğimlerininin kesin ve doğru bir şekilde ölçülebilmesi için bir duvar oktantı geliştirdi. Bundan başka trigonometri çizelgelerinde hesaplamalar yapmak için gelişmiş metotlar üretti ve küresel trigonometrideki bazı problemlerin çözümü için yeni yöntemler keşfetti. Astronomik gözlemler için sinüs (ceyb) ve tanjant (zıl) değerlerini gösteren çizelgeleri on beşer dakikalık açı aralıklarıyla hesapladı. Ünlü matematikçi El-Mervezi'nin de buna benzer çizelgeleri olduğu bilinse de onun çizelgeleri tanjant ve kotanjantı yayın fonksiyonu olarak vermediği gibi, Ebu'l Vefa'nın çizelgeleri kadar sağlıklı değildir.

Matematik

Ebu'l Vefa, matematik sahasında özellikle trigonometri üzerinde çalışmalar yapmıştır. Trigonometrinin altı esas oranı arasındaki trigonometrik ilişkileri ilk defa ortaya koymuştur. Bu oranlar günümüzde aynen kullanılmaktadır.

Ebu'l Vefa'nın matematik tarihinde ortaya koyduğu ilk trigonometrik özdeşliklerden bazıları şunlardır:

Ayrıca küresel trigonometride sinüs teoremini açıklamıştır:[2]

Ebu'l Vefa, Habeş el Hasib ve El Mervezi gibi önemli matematikçileri izleyerek tanjant ve sekant fonksiyonlarını tanımladı. Sekant kaşifi olarak genellikle Kopernik bilinirse de ünlü bilim tarihçilerinden Monte Candon ve Carra de Vaux'un araştırmaları sonucu bu buluşun Ebu'l Vefa'ya ait olduğu tespit edilmiştir.

Trigonometrinin yanında cebir ilmi üzerinde derinlemesine çalışmalarda bulunan Ebu'l Vefa o zamana dek bilinmeyen dördüncü dereceden denklemlerin çözümünü gerçekleştirdi. Örneğin:

denklemini çözerken ve koniklerinin kesişmesinden istifade etti. Eski Yunanların ve Hintlerin çözemediği birçok problemi geometrik yollarla çözmeyi başardı.

Eserleri

  • Kitab'ul Kamil: Trigonometri ve astronomiden bahseden meşhur eseridir. Birinci bölümde yıldızların hareketinden önce bilinmesi gereken meseleler, ikinci bölümde yıldızların hareketlerinin incelenmesi, üçüncü bölümde yıldızların hareketlerine arız olan şeyler anlatılmaktadır. Eserin yazma bir nüshası Paris National Kütüphanesi'nde 1138 numarada kayıtlıdır. Eser Sedilot tarafından tercüme edilerek basılmıştır.
  • Kitab'un fi Amel-il Mistarati ve'l Pergarvel Gunye
  • Kitabab ma Yahtacu-İleyh-İl-Küttab vel Ummal min İlm-il-Hisab
  • Kitabün Fahirün bil Hisab
  • Kitab'ün fi'l İlmi Hisab'il Musellat
  • Kitab'ün fi'l Felek
  • Kitab'un Zic-iş Şamil
  • Kitab'un fi'l Hendese
  • Kitab'ul Medhal ila Aritmetik
  • Tefsir-ii Harezmi fi Cebri ve'l Mukabele

Saygınlığı

  • Ay üzerindeki bir kratere O'na ithafen Abul Wafa adı verilmiştir.
  • Ünlü bilim tarihçisi Plorian Cajori 'History of Mathematics' adlı eserinde onun hakkında şöyle demiştir:

Ebul Vefa şüphesiz ki Harezmi'nin matematik ve geometrideki buluşlarını önemli ölçüde geliştirdi. Özellikle de geometri ile cebir arasındaki münasebetler üzerinde durdu. Böylece, bazı cebirsel denklemleri geometri yoluyla çözmeyi başardı ve diferansiyel hesap ve analitik geometri'nin temelini kurdu. Bilindiği gibi, diferansiyel hesap insan zekasının bulduğu mühim ve pek faydalı bir mevzu olup, ilim ve teknolojik muasır gelişmelerin temel kaynağını teşkil etmektedir. Ayrıca Battani'nin trigonometriyle ilgili eserlerini inceleyerek girift ve anlaşılmayan yönlerini açıklığa kavuşturdu. demektedir.[3]

Kaynakça

  1. ^ "Arşivlenmiş kopya". 25 Ekim 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 14 Ağustos 2009. 
  2. ^ Jacques Sesiano, "Islamic mathematics", p. 157, in Selin, Helaine; D'Ambrosio, Ubiratan (2000), Mathematics Across Cultures: The History of Non-western Mathematics, Springer, ISBN 1-4020-0260-2
  3. ^ Yeni Rehber Ansiklopedisi; C:6,S:148-149

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Hârizmî</span> Fars matematikçi, astronom ve coğrafyacı

Hârizmî ya da tam künyesiyle Ebû Ca'fer Muhammed bin Mûsâ el-Hârizmî ; matematik, gök bilim, coğrafya ve algoritma alanlarında çalışmış Fars bilim insanı. Hârizmî 780 yılında Harezm bölgesinin Hive şehrinde dünyaya gelmiştir. 850 yılında Bağdat'ta ölmüştür.

<span class="mw-page-title-main">Trigonometri</span> üçgenlerin açı ve kenar bağıntılarını konu alan geometri dalı

Trigonometri, üçgenlerin açıları ile kenarları arasındaki bağıntıları konu edinen matematik dalı. Trigonometri, sinüs ve kosinüs gibi trigonometrik işlevlerin (fonksiyon) üzerine kurulmuştur ve günümüzde fizik ve mühendislik alanlarında sıkça kullanılmaktadır.

<span class="mw-page-title-main">Sinüs (matematik)</span>

Matematikte sinüs, trigonometrik bir fonksiyon. Sin kısaltmasıyla ifade edilir.

<span class="mw-page-title-main">Trigonometrik fonksiyonlar</span>

Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.

<span class="mw-page-title-main">Kutupsal koordinat sistemi</span>

Matematikte kutupsal koordinat sistemi veya polar koordinat sistemi, noktaların birer açı ve Kartezyen koordinat sistemindeki orijinin eşdeğeri olup "kutup" olarak bilinen bir merkez noktaya olan uzaklıklar ile tanımlandığı, iki boyutlu bir koordinat sistemidir. Kutupsal koordinat sistemi, matematik, fizik, mühendislik, denizcilik, robot teknolojisi gibi birçok alanda kullanılır. Bu sistem, iki nokta arasındaki ilişkinin açı ve uzaklık ile daha kolay ifade edilebildiği durumlar için özellikle kullanışlıdır. Kartezyen koordinat sisteminde, böyle bir ilişki ancak trigonometrik formüller ile bulunabilir. Kutupsal denklemler, çoğu eğri tipi için en kolay, bazıları içinse yegâne tanımlama yöntemidir.

<span class="mw-page-title-main">Tanjant</span>

Tanjant, trigonometrik bir fonksiyondur. "tan" ile ifade edilir.

<span class="mw-page-title-main">Battânî</span> Arap astronom ve matematikçi (858–929)

Ebu Abdullah Muhammed bin Cabir bin Sinan er-Rekki es-Sabi el-Battani Latince Albategnius, Albategni ya da Albatenius olarak bilinen, Arap astronom, astrolog ve matematikçidir. Şu anda Türkiye'de bulunan Şanlıurfa ilinin bir ilçesi olan Harran'da doğmuştur. Lakabı es-Sabi''dir fakat tam künyesi, bizi onun Müslüman olduğu sonucuna götürür.

<span class="mw-page-title-main">Trigonometri tarihi</span>

Üçgenlerle ilgili erken çalışmalar, Mısır matematiği ve Babil matematiğinde MÖ 2. binyıla kadar izlenebilir. Trigonometri, Kushite matematiğinde de yaygındı. Trigonometrik fonksiyonların sistematik çalışması Helenistik matematikte başladı ve Helenistik astronominin bir parçası olarak Hindistan'a ulaştı. Hint astronomisinde trigonometrik fonksiyonların incelenmesi, özellikle sinüs fonksiyonunu keşfeden Aryabhata nedeniyle Gupta döneminde gelişti. Orta Çağ boyunca, trigonometri çalışmaları İslam matematiğinde El-Hârizmî ve Ebu'l-Vefâ el-Bûzcânî gibi matematikçiler tarafından sürdürüldü. Altı trigonometrik fonksiyonun da bilindiği İslam dünyasında trigonometri bağımsız bir disiplin haline geldi. Arapça ve Yunanca metinlerin tercümeleri trigonometrinin Latin Batı'da Regiomontanus ile birlikte Rönesans'tan itibaren bir konu olarak benimsenmesine yol açtı. Modern trigonometrinin gelişimi, 17. yüzyıl matematiği ile başlayan ve Leonhard Euler (1748) ile modern biçimine ulaşan Batı Aydınlanma Çağı boyunca değişti.

<span class="mw-page-title-main">François Viète</span> Fransız matematikçi (1540 – 1603)

François Viete Fransız matematikçi. Adıyla anılan Vieta formüllerini keşfetmiştir.

<span class="mw-page-title-main">Euler özdeşliği</span>

Matematiksel çözümlemede Euler özdeşliği olarak adlandırılan ve Leonhard Euler tarafından bulunan eşitlik

<span class="mw-page-title-main">Kerecî</span> İranlı matematikçi

El-Kereci veya Ebu Bekir bin Muhammed bin el Hüseyin el-Kereci Cebir'i geometrik işlemlerin sınırlarından kurtararak, günümüz matematiğinde kullanılan cebirin çekirdek yapısını oluşturan 10. yüzyıl İranlı Müslüman matematikçi ve mühendisdir. Üç büyük çalışması Al-Badi' fi'l-hisab, Al-Fakhri fi'l-jabr wa'l-muqabala ve Al-Kafi fi'l-hisab 'tır.

<span class="mw-page-title-main">Hiperbolik fonksiyon</span>

Matematikte, hiperbolik fonksiyonlar sıradan trigonometrik fonksiyonların analogudur. Temel hiperbolik fonksiyonlar hiperbolik sinüs "sinh", hiperbolik kosinüs "cosh", bunlardan türetilen hiperbolik tanjant "tanh" ve benzer fonksiyonlardır. Ters hiperbolik fonksiyonlar alan hiperbolik sinüsü "arsinh" ve benzeri fonksiyonlardır.

Değişken değiştirme, İntegral, çarpanlara ayırma, denklemler, üslü denklemler, trigonometri ve diferansiyel denklemler başta olmak üzere matematiğin her alanında işlemi basitleştirmek için kullanılan matematiksel bir yöntemdir.

<span class="mw-page-title-main">Birim çember</span> trigonometri ve mampo da çok işlemi olmuş bir çemberdi ve çok kolay bir yönetimi vardır birim çemberi matematiğin temelini olustur bu yüzden çok önemli bir cemberdir

Birim çember Matematikte, yarıçapı bir birim olan çembere birim çember denir. Çoğunlukla, özellikle trigonometride, Öklid düzlemine göre Kartezyen koordinat sisteminde, merkezi orijin üzerinde (0,0) olan ve yarıçapı bir birim olan çemberdir. n birim çember sıklıkla S1; olarak ifade edilir. Genellikle daha büyük boyutları ise birim küredir. (x,y) birim çember üzerinde bir nokta olduğunda, |x| ve |y|, dik olan ve hipotenüsü bir olan üçgenin diğer kenar uzunluklarıdır. Bu nedenle, Pisagor teoremine göre, x ve y bu denklemi karşılamaktadır.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

Ascalonlu Eutocius, çeşitli Arşimet incelemeleri ve Apollonius'un Konikleri üzerine yorumlar yazan bir Yunan matematikçi.

<span class="mw-page-title-main">Orta Çağ İslam matematiği</span> yaklaşık 622 ile 1600 yılları arasında İslam medeniyeti altında korunan ve geliştirilen matematiğin bütünü

İslam'ın Altın Çağı'nda matematik, özellikle 9. ve 10. yüzyıllarda, Yunan matematiği ve Hint matematiği üzerine inşa edilmiştir. Ondalık basamak-değer sisteminin ondalık kesirleri içerecek şekilde tam olarak geliştirilmesi, ilk sistematik cebir çalışması (Hârizmî tarafından yazılan Cebir ve Denklem Hesabı Üzerine Özet Kitap adlı eser ve geometri ve trigonometride önemli ilerlemeler kaydedilmiştir.

Trigonometri, üçgenlerdeki kenarlar ve açılar arasındaki ilişkileri inceleyen bir matematik dalıdır. Trigonometri, bu ilişkileri tanımlayan ve dalgalar gibi döngüsel fenomenlere uygulanabilirliği olan trigonometrik fonksiyonları tanımlar.

Abul-Hasan Kūshyār ibn Labbān ibn Bashahri Daylami (971–1029), Kûşyâr bin Lebbân, İran'ın Hazar Denizi'nin güneyindeki Deylem'den İranlı matematikçi, coğrafyacı ve astronomdur.

Aşağıda geometri'deki önemli gelişmelerin bir zaman çizelgesi verilmiştir: