İçeriğe atla

e sayısı

e sayısı veya Euler sayısı, matematik, doğal bilimler ve mühendislikte önemli yeri olan sabit bir reel sayı, doğal logaritmanın tabanı. e sayısı aşkın bir sayıdır, dolayısıyla irrasyoneldir ve tam değeri sonlu sayıda rakam kullanılarak yazılamaz. Yaklaşık değeri şöyledir:

Tarih

e sabitine dolaylı olarak ilk değinen İskoç matematikçi John Napier olmuştur. Napier, 1618'de logaritmalar üzerine yayımladığı bir kitabın ekinde, e sabitini kullanarak bazı hesaplar yapmıştır; fakat sabitin kendisiyle fazla ilgilenmemiştir. e sayısını gerçek anlamda ilk keşfeden Jakob Bernoulli olmuştur. Bernoulli, e sayısını 1683'te birleşik faiz problemini incelerken keşfetmiş ve bu sayının yaklaşık değerini hesaplamıştır. Sabite e ismini veren ise İsviçreli matematikçi Leonhard Euler'dir. Euler ilk olarak 1731'de Christian Goldbach'a yazdığı bir mektupta bu sabitten "e sayısı" diye bahsetmiştir. Euler öncesi ve sonrasında bu sabit için b ve c harfleri de kullanılmışsa da sonuçta kabul edilen isim e olmuştur.

Euler e sayısını, virgülden sonra 23. basamağına kadar hesaplayabilmiştir. Günümüzde ise e sayısının milyarlarca basamağı bilinmektedir. e,nin irrasyonel bir sayı olduğu Euler tarafından, aşkın bir sayı olduğu ise Fransız matematikçi Charles Hermite tarafından kanıtlanmıştır.

Eşdeğer tanımlar

Beşinci tanıma göre, 1 < x < e için y = 1/x eğrisinin altındaki alan 1'e eşittir.

1. e sayısı, aşağıdaki diferansiyel denklemi sağlayan yegâne pozitif reel sayıdır:

2. e sayısı, aşağıdaki diferansiyel denklemi sağlayan yegâne pozitif reel sayıdır:

Buradaki ifadesi, e tabanlı logaritmayı temsil etmektedir. Bazen ifadesi yerine ln x ifadesi de kullanılır.

3. e sayısı, aşağıdaki limite eşittir:

4. e sayısı, aşağıdaki sonsuz toplama eşittir:

Buradaki n! ifadesi, n faktöriyeli temsil etmektedir: n! = 1 × 2 × 3 × ... × n.

5. e sayısı, aşağıdaki integral denklemini sağlayan yegâne pozitif reel sayıdır:

Uygulamalar

Bileşik faiz problemi

Jakob Bernoulli, e sabitini bileşik faiz problemini incelerken keşfetmiştir. Bu problem, basit bir örnekle anlatılabilir. Elinde 1 lirası olan bir yatırımcı, parasını yılda %100 faiz veren bir bankaya yatırırsa, bir sene sonra 2 lirası olacaktır. Diğer yandan bu yıllık faiz %50 – %50 şeklinde yılda iki kez işlerse, yatırımcının yıl sonundaki parası (1 + ½)² = 2,25 lira olacaktır. Benzer şekilde eğer faiz yılda dört kez %25 oranında işlerse, yatırımcının yıl sonundaki parası (1 + 1/4)4 = 2,44140625 lira olacak, faiz her ay %8,333... oranında işlerse yıl sonundaki para (1 + 1/12)12 = 2,6130... lira olacaktır. Faizin işleme süresini daha da kısaltırsak, her hafta işleyen faiz yıl sonunda 2,6925... lira, her gün işleyen faiz yıl sonunda 2,71453... lira verecektir.

Faizin işleme süresi kısaldıkça, yıl sonundaki para 2 ve 3 arasında belli bir değere yakınsamaktadır. Yukarıdaki 3 numaralı tanımdan da görüldüğü üzere yakınsanan değer e sayısıdır.

Bernoulli denemeleri

e sayısı olasılık kuramında da çeşitli şekillerde karşımıza çıkar. Örneğin bir kumarcı, kazanma şansı 1/n olan bir oyunu n kere oynarsa, yaklaşık 1/e (%36,787...) ihtimalle hiçbir seferde kazanamayacaktır. n ne kadar büyükse, hiç kazanmama ihtimali 1/e,ye o kadar yakın olur.

Kumarcının n seferde k kere kazanma olasılığı, binom dağılımına göre aşağıdaki değere eşittir:

Buna göre, n seferde k = 0 kere kazanma olasılığı, (1 - 1/n)ndir ve bu ifade, n büyüdükçe 1/e,ye yaklaşır.

Şapka problemi

Bir restorana giren ve girişte şapkalarını vestiyere bırakan n tane müşteri düşünelim. Vestiyer, şapkalara etiket takmayı unutunca hangi şapkanın hangi müşteriye ait olduğunu unutuyor ve çıkışta şapkasını isteyen her müşteriye rastgele bir şapka seçip veriyor. Bu durumda, n müşteriden hiçbirinin kendi şapkasını almaması olasılığı, aşağıdaki toplama eşittir:

Müşteri sayısı n büyüdükçe, bu toplam 1/e değerine yaklaşacaktır.

Kaynakça

Dış bağlantılar


İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">Büyük O gösterimi</span>

Büyük O (Big-Oh) gösterimi matematiksel bir gösterim olup işlevlerin (fonksiyonların) asimptotik davranışlarını tarif etmek için kullanılır. Bir işlevin büyümesinin asimptotik üst sınırını daha basit başka bir işlev cinsinden tanımlanması demektir. İki temel uygulama alanı vardır: matematik alanında genellikle kırpılmış bir sonsuz serinin kalan terimini karakterize etmek için kullanılır; bilgisayar bilimlerinde ise algoritmaların bilgi işlemsel karmaşıklığının çözümlemesi için kullanılır.

<span class="mw-page-title-main">Jakob Bernoulli</span>

Jacob Bernoulli, Bernoulli ailesindeki ünlü matematikçilerden biridir. Leibniz kalkülüsünün ilk savunucularındandır ve Leibniz- Newton kalkülüs tartışmasında Leibniz'in yanında yer almıştır. Kardeşi Johann Bernoulli ile kalkülüse yaptığı birçok katkıyla da ünlüdür. Ancak, matematiğe en önemli katkısı büyük sayılar yasası ile olasılık alanında olmuştur.

<span class="mw-page-title-main">Logaritma</span> özel tanımlı bir fonksiyon türü

Matematikte logaritma, üstel işlevlerin tersi olan bir matematiksel fonksiyondur. Mesela, 1000'in 10 tabanına göre logaritması 3'tür çünkü 1000, 10'un 3. kuvvetidir,1000 = 10 × 10 × 10 = 103. Daha genel bir ifadeyle:

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

<span class="mw-page-title-main">Binom dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, binom dağılımı n sayıda iki kategori (yani başarı/başarısızlık, evet / hayır, 1/0 vb) sonucu veren denemelere uygulanır. Araştırıcının ilgi gösterdiği kategori başarı olarak adlandırılır. Bu türlü her bir deneyde, bağımsız olarak, başarı (=evet=1) olasılığının p olduğu (ve yalnızca iki kategori sonuç mümkün olduğu için başarısızlık olasılığının 1 - p olduğu) bilinir. Bu türlü bağımsız n sayıda denemeler serisi içinde elde edilen başarı sayısının ayrık olasılık dağılımı binom dağılım olarak tanımlanır. Bir binom dağılım sadece iki parametre ile, yani n ve p ile tam olarak tanımlanır. Matematik notasyon olarak bir rassal değişken X binom dağılım gösterirse şöyle ifade edilir:

X ~ B(n,p)
<span class="mw-page-title-main">Poisson dağılımı</span>

Poisson dağılımı, olasılık kuramı ve istatistik bilim kollarında bir ayrık olasılık dağılımı olup belli bir sabit zaman birim aralığında meydana gelme sayısının olasılığını ifade eder. Bu zaman aralığında ortalama olay meydana gelme sayısının bilindiği ve herhangi bir olayla onu hemen takip eden olay arasındaki zaman farkının, önceki zaman farklarından bağımsız oluştuğu kabul edilir.

<span class="mw-page-title-main">Negatif binom dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında negatif binom dağılım bir ayrık olasılık dağılım tipi olup Pascal dağılımı ve Polya dağılımı bu dağılımın özel halleridir.

<span class="mw-page-title-main">Zeta dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, zeta dağılımı bir ayrık olasılık dağılımıdır. Eğer X s parametresi ile zeta dağılımı gösteren bir bir rassal değişken ise, Xin k tam sayısı değerini almasının olasılığı şu olasılık kütle fonksiyonu ile belirtilir:

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

<span class="mw-page-title-main">Log-normal dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında log-normal dağılım logaritması normal dağılım gösteren herhangi bir rassal değişken için tek-kuyruklu bir olasılık dağılımdır. Eğer Y normal dağılım gösteren bir rassal değişken ise, bu halde X= exp(Y) için olasılık dağılımı bir log-normal dağılımdır; aynı şekilde eğer X log-normal dağılım gösterirse o halde log(X) normal dağılım gösterir. Logaritma fonksiyonu için bazın ne olduğu önemli değildir: Herhangi iki pozitif sayı olan ab ≠ 1 için eğer loga(X) normal dağılım gösterirse, logb(X) fonksiyonu da normaldir.

Matematikte zeta sabiti, bir tam sayının Riemann zeta fonksiyonunda yerine yazılmasıyla elde edilen sayıdır. Bu madde farklı tam sayı değerleri için zeta fonksiyonu özdeşlikleri içermektedir.

i sayısı

Sanal birim ya da i sayısı, x2 = -1 eşitliğini sağlayan bir sayıdır. Reel sayılar kümesindeki hiçbir sayının karesi negatif olamayacağı için, bu ikinci dereceden denklemi sağlayan fakat reel sayılar kümesine ait olmayan böyle bir sayı, genellikle i notasyonu ile gösterilir. i sayısı, ℝ ile gösterilen reel sayılar kümesini ℂ ile gösterilen kompleks sayılar kümesine genişleten ve sabit olmayan her bir P(x) polinomu için en az bir kök sağlayan matematiksel bir kavramdır. "Hayali" terimi negatif kareye sahip gerçek sayı olmadığı için kullanılır.

<span class="mw-page-title-main">Riemann zeta işlevi</span>

Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Matematiksel analizin sayı teorisinde Euler–Mascheroni sabiti matematiksel sabit'tir. Yunan harfi Yunanca: γ (gama) ile gösterilir.

<span class="mw-page-title-main">Tetrasyon</span>

Matematikte, tetrasyon, üslü sayıdan sonra gelen ilk aşırı işlecin tekrarlı üssüdür. Tetrasyonun İngilizce karşılığı olan tetration kelimesi ilk kez matematikçi Reuben Louis Goodstein tarafından, tetra- (dört) ve iteration (tekrar)dan türetilerek kullanılmaya başlandı. Tetrasyon çok büyük sayıların gösterimi için kullanıldı. Fakat birkaç pratik uygulaması vardır. Bu yüzden sadece saf matematik incelenir. Burada aşırı işlecin ilk dört örneğin gösteriliyor. Tekrasyon dördüncüsüdür:

  1. toplama
    Normal bilinen toplama işlemi.
  2. çarpma
    genellikle temel işlemlerden birini ifade eder. Fakat doğal sayılar gibi özel durumlar için kendine n kere eklenen a olabilir.
  3. üs alma
    a nın kendisi ile n kere çarpılması.
  4. tetrasyon
    a 'nın kendisiyle n kere üssünün alınması.

Medyan bir anakütle ya da örneklem veri serisini küçükten büyüğe doğru sıraladığımızda, seriyi ortadan ikiye ayıran değere denir. İstatistiğin bir alt dalı olan betimsel istatistikde medyan bir merkezsel konum ölçüsü kabul edilir.

Matematikte Euler sayıları, Taylor serisi açılımıyla tanımlanan bir En tam sayı dizisidir..

Matematik alanında, toplam veya genel toplam olarak sonuçlanan, toplananlar ya da toplamalar diye adlandırılan bir sayı dizisinin eklenme sürecine toplam/toplama denir. Sayıların yanı sıra, fonksiyonlar, vektörler, matrisler, polinomlar ve genelde "+" işareti ile tanımlanmış işleme sahip diğer tüm matematiksel nesne türleri de toplanabilir.