Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.
Kategori teorisi ya da Ulam kuramı, matematiksel yapılar ve bunlar arasındaki ilişkilerle soyut olarak ilgilenen bir matematik kuramıdır. Kategori kuramı, öğelere (nesnelere) yoğunlaşan küme kuramının aksine, nesneler arası ilişkilere (morfizmlere) odaklanır.
Matematikte, süreklilik, girdisi yeterince küçük miktarda değiştiğinde çıktısı da küçük miktarda değişen fonksiyonları ifade eder. Tek değişkenli gerçel fonksiyonlar için, "grafiğini el kaldırmadan çizebilme" şartının soyutlanmasıyla ulaşılmış bir kavramdır. Bunun geçerli olmadığı fonksiyonlara süreksiz fonksiyon denir.
Cebir sayılar teorisini, geometriyi ve analizi içine alan geniş bir matematik dalıdır. Temel matematik işlemlerinden, çember ve daire alanları bulmayı kapsayan geniş bir ilgi alanına sahiptir. Cebir, mühendislik ve eczacılık gibi birçok alanda kullanılmaktadır. Kuramsal cebir, ileri matematiğin bir dalı olmakla birlikte sadece uzmanlar tarafından çalışılan bir koldur.
Henri Léon Lebesgue, 17. yüzyıl integral kavramının-bir eksen ile o eksen için tanımlanmış bir fonksiyonun eğrisi arasındaki alanı toplamak- bir genellemesi olan entegrasyon teorisi ile tanınan Fransız matematikçiydi. Teorisi ilk olarak 1902'de Nancy Üniversitesi'ndeki Intégrale, longueur, aire tezinde yayınlandı.
Devre analizi bir elektrik devresinde bulunan bütün düğüm voltajlarını ve kollardaki akımları bulmak için tercih edilen bir yöntemdir. Bu devre analizi terimi lineer devre analizi anlamındaydı. Bununla birlikte lineer olmayan devreler de analiz edilirdi. Dirençli devreler normalde tek bir kaynağa bağlıdır ve direçler basit teknikler kullanılarak analiz edilebilir, bununla beraber dirençli devre analizi terimi bunun yerine kullanılır. Dirençli devre analizi terimini açıklamak için yanıltıcı olan devre analizi terimi de kullanıldı. Lineer DC devreleri bağımsız voltaj ve akım kaynakları, bağımlı akım ve voltaj kaynakları ve lineer dirençler içerir. Lineer AC devreleri de en az bir lineer diferansiyel eleman, ayrıca en az bir AC kaynak içerir. Eğer bir devrede kondansatör ve bobin yoksa DC devre analiz teknikleri uygulanabilir. Eğer devrede bir veya daha fazla lineer diferansiyel eleman ve bir AC kaynak varsa AC devre analiz teknikleri uygulanmalıdır.
Başlangıçta sonsuz küçük hesap veya "sonsuz küçüklerin hesabı" olarak adlandırılan kalkülüs, geometrinin şekillerle çalışması ve cebirin aritmetik işlemlerin genellemelerinin incelenmesi gibi, kalkülüs sürekli değişimin matematiksel çalışmasıdır.
Matematikte matematiksel programlama, eniyileme ya da optimizasyon terimi; bir gerçel fonksiyonu minimize ya da maksimize etmek amacı ile gerçek ya da tam sayı değerlerini tanımlı bir aralıkta seçip fonksiyona yerleştirerek sistematik olarak bir problemi incelemek ya da çözmek işlemlerini ifade eder. Örneğin bu problem şöyle olabilir:
Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.
Gerçel analiz ya da bilinen diğer ismiyle reel analiz, matematiksel analizin bir dalıdır. Bu dal, gerçek sayılar ve bu sayılardan türetilen yapılarla ilgili temel kavramları ele alır. Ana konuları arasında diziler, seriler, limitler, süreklilik, türev, integral ve fonksiyon dizileri yer alır. Gerçek analizin incelenmesi, matematiğin diğer alanları için temel araçlar ve yöntemler sağlar.
Periyodik fonksiyon, matematikte belli zaman aralığıyla kendini tekrar eden olguları ifade eden fonksiyonlara verilen isimdir. Tekrar etme süresi "periyot" olarak bilinir. Trigonometrik fonksiyonlar en tipik periyodik fonksiyonlardır. Bununla birlikte, diğer periyodik fonksiyonlar da trigonometrik fonksiyonların toplamı olarak ifade edilebilirler.
Integral hesapla Eliptik integralin bağlantısı elipsin yay uzunluğu ile ilgilidir. Bunu ilk gösteren Leonhard Euler'in öğrencisi Giulio Fagnano olmuştur. Modern Matematikte eliptik integral'in en geniş şekilde bir f fonksiyonu olarak tanımlanmış formu:
- şeklindedir.
Fonksiyonlar, sahip oldukları özelliklere göre sınıflandırılabilir.
Matematikte fonksiyon uzayı bir X kümesinden bir Y kümesine tanımlı fonksiyonların oluşturduğu kümeye verilen bir addır. Fonksiyonlar kümesi yerine fonksiyon uzayı denilmesinin nedeni matematiğin kendi içindeki uygulamalarında bu kümenin genellikle topolojik uzay veya vektör uzayı olarak ortaya çıkmasıdır.
Matematikte bir sabit nokta teoremi, bir F fonksiyonunun, genel terimlerle ifade edilmiş belli koşullar altında en az bir sabit noktası olduğunu ifade eden bir sonuçtur. Bu tür sonuçlar matematikte en çok kullanılanlar arasındadır.
Tarih boyunca matematiğin konu çeşitliliği ve derinliği artmaktadır, matematiği kavrama, birçok konuyu matematiğin daha genel alanlarına göre sınıflandırma ve düzenleme için bir sistem gerektirir. Bir dizi farklı sınıflandırma şeması ortaya çıkmıştır ve bazı benzerlikleri paylaşsalar da, kısmen hizmet ettikleri farklı amaçlara bağlı olarak farklılıkları vardır. Ek olarak, matematik geliştirilmeye devam ettikçe, bu sınıflandırma şemaları da yeni oluşturulan alanları veya farklı alanlar arasında yeni keşfedilen bağlantıları dikkate alacak şekilde değişmelidir. Farklı alanlar arasındaki sınırı aşan, genellikle en aktif olan bazı konuların sınıflandırılması daha zor hale gelir.
Matematik, sayı, uzay, matematiksel yapı ve değişim gibi konuları araştıran bir çalışma alanıdır. Matematik ve bilim arasındaki ilişki hakkında daha fazla bilgi Matematik ve bilim bölümünde bulunabilir.
Doğrusallık, grafiksel olarak düz bir çizgi olarak gösterilebilen matematiksel bir ilişkinin (fonksiyonun) özelliğidir. Doğrusallık, orantılılık kavramı ile yakından ilişkilidir. Fizikteki örnekler, bir elektrik iletkenindeki voltaj ve akımın doğrusal ilişkisini ve kütle ve ağırlık ilişkisini içermektedir. Daha karmaşık ilişkiler doğrusal olarak sayılmamaktadır.
Tarihte birleşik bir matematik teorisine ulaşmak için çeşitli girişimlerde bulunulmuştur. En büyük matematikçilerden bazıları, tüm konunun tek bir teoriye sığdırılması gerektiği görüşünü dile getirdiler.