İçeriğe atla

Eşbölüşüm teoremi

Alfa helikal peptitin termal hareketi. Hareket rastgele ve karmaşık ve her bir atomun enerjisi hızlıca değişebiliyor. Bununla birlikte eşbölüşüm teoremi her atomun ortalama kinetik enerjisinin ve çoğu titreşim kiplerinin ortalama potansiyel enerjisinin hesaplanabilmesini sağlıyor. Şekildeki gri, kırmızı ve mavi küreler karbon, oksijen ve azot atomlarını daha küçük beyaz küreler de hidrojen atomunu temsil ediyor.

Klasik istatistik fizikte eşbölüşüm teoremi bir sistemin ortalama enerjisi ile sıcaklığı arasında ilişki kuran genel bir teoremdir. Eşbölüşüm teoremi ayrıca eşbölüşüm yasası, enerjinin eşbölüşümü veya basitçe eşbölüşüm olarak da bilinir. Eşbölüşümün temel düşüncesi, termal dengede enerjinin çeşitli formları arasında eşit olarak paylaşılmasıdır; örneğin bir molekülün öteleme hareketindeki ortalama kinetik enerjisi dönme hareketindeki ortalama kinetik enerjiye eşit olmalıdır.

Eşbölüşüm teoremi kantitatif tahminler yapar. Virial teoremi gibi, bir sistem için, verilen sıcaklıkta, toplam ortalama kinetik ve potansiyel enerjiyi verir bunlarla sistemin ısı kapasitesi hesaplanabilir. Eşbölüşüm, bir parçacığın kinetik enerjisi veya bir yayın potansiyel enerjisi gibi, enerjinin bireysel bileşenlerinin de ortalama değerini verir. Örneğin, eşbölüşüm termal dengedeki bir ideal gazın her molekülünün (3/2)kBT'lik bir kinetik enerjiye sahip olduğunu öne sürer, burada kB Boltzmann sabitidir ve T sıcaklıktır. Genel olarak ne kadar karışık olduğuna bakılmaksızın termal dengedeki herhangi bir klasik sisteme uygulanabilir. Eşbölüşüm teoremi katıların spesifik ısı kapasiteleri için klasik ideal gaz yasasının ve Dulong–Petit yasasının türetiminde kullanılabilir. Teorem ayrıca, rölativistik etkiler göz önünde tutulduğunda dahi, yıldızların (nötron yıldızları ve cüce yıldızlar da dahil) özellikleri ile ilgili öngörülerde kullanılabilir.

Eşbölüşüm teoremi belirli koşullarda hatasız tahminler yapabilmesine rağmen, özellikle düşük sıcaklıklarda kuantum etkisinin belirgin olduğu durumlarda hatalı olur. Termal enerji (3/2)kBT belirli serbestlik derecelerinde kuantum enerji aralığından düşük olduğunda, ortalama enerji ve serbestlik derecesinin ısı kapasitesi eşbölüşümün öngördüğünden daha düşük olur.

Tarihi

Kinetik enerjinin eşbölüşümü ilk olarak 1843'te ve daha doğru bir şekilde 1845'te John James Waterston tarafından ileri sürüldü.[1] 1859'da James Clerk Maxwell bir gazın kinetik ısı enerjisinin çizgisel ve dönme enerjisine eişt olarak bölündüğünü öne sürdü.[2] 1876'da Ludwig Boltzmann bu prensibi, bir sistemdeki ortalama enerjinin hareketin bütün bağımsız bileşenlerine eşit olarak bölüneceğini göstererek genişletti.[3][4] Boltzman katıların özgül ısı kapasiteleri için Dulong–Petit yasasının kuramsal açıklamasını sağlamak için eşbölüşüm teoremini kullandı.

Eşbölüşüm teoreminin tarihi özgül ısı kapasitesininki ile iç içe geçmiştir. Her ikisi de 19. yüzyılda araştırıldı. 1819'da Fransız fizikçiler Pierre Louis Dulong ve Alexis Thérèse Petit oda sıcaklığında katı elementlerin özgül ısı kapasitelerinin elementin atom ağırlığı ile ters orantılı olduğunun keşfettiler.[5] Onların yasası yıllarca atom ağırlığının hesaplanması için bir teknik olarak kullanıldı.[6] Ancak James Dewar ve Heinrich Friedrich Weber'in takip eden araştırmaları Dulong–Petit yasasının sadece yüksek sıcaklıklarda geçerli olduğunu gösterdi;[7] düşük sıcaklıklarda ve elmas gibi son derece sert katılarda özgül ısı kapasitesi daha düşüktü.[8]

Gazlar için özgül ısı kapasitesi üzerine yapılan deneysel gözlemler de eşbölüşüm teoreminin geçerliliği hakkındaki endişeleri artırdı. Teorem molar ısı kapasitesinin basit tek atomlu gazlar için kabaca 3 cal/(mol·K) iken iki atomlu gazlar için 7 cal/(mol·K) olması gerktiğini öngörür. Deneyler eski tahmini doğruladı[9] fakat iki atomlu gazlar için molar ısı kapasiteleri sıklıkla yaklaşık 5 cal/(mol·K) olarak bulundu,[10] ve düşük sıcaklıklarda yaklaşık olarak 3 cal/(mol·K) değerine düşüyordu.[11] Maxwell 1875'te deney ve eşbölüşüm arasındaki uyuşmazlığın bu sayıların gösterdiğinden daha kötü olduğuna işaret etti;[12] atomların iç kısımları var olduğu için ısı enerjisi bu iç kısımların hareketine gitmesi gerekir, bu da tek atomlu ve iki atomlu gazlar için öngörülen özgül ısı kapasitelerinin 3 cal/(mol·K) ve 7 cal/(mol·K) değerinden daha büyük yapar.

Üçüncü bir çelişki metallerin özgül ısısıyla ilgilidir.[13] Klasik Drude modeline göre metal elektronları neredeyse ideal gaz gibi davranır, yani elektronlar ısı kapasitesine (3/2) NekB kadar katkıda bulunmalıdır. Buradaki Ne elektron sayısını verir. Ancak deneysel olarak elektronların ısı kapasitesine katkıları küçüktür: çoğu iletkenin ve yalıtkanın molar ısı kapasiteleri neredeyse aynıdır.[13]

Eşbölüşümün molar ısı kapasitesini açıklamaktaki başarısızlığı konusunda muhtelif açıklamalar getirildi. Boltzmann eşbölüşüm kuralının türetilişinin doğruluğunu savundu, ancak gazların esirle olan etkileşimlerinden dolayı termal dengede olamayabileceğini söyledi.[14] Lord Kelvin eşbölüşüm teoreminin deneylerle uyuşmadığı için doğru olmadığını öne sürdü ancak nasıl olduğunu göstermekte başarısız oldu.[15] Lord Rayleigh daha radikal bir görüş ile ortaya atıldı. Ona göre hem eşbölüşüm teoremi hem de termal dengenin deneysel varsayımı doğrudur. Bu ikisini uzlaştırmak için eşbölüşüm teoreminin yıkıcı basitliğinden kaçışı sağlayacak yeni bir prensibe ihtiyaç duyulduğunu belirtti.[16] Albert Einstein 1907'de kuantum etkisi sebebiyle olan bu özgül ısıdaki anormallikleri göstererek kaçışı buldu.

Uygulamaları

İdeal gaz yasası

İdeal gazlar eşbölüşüm teoreminin önemli bir uygulamasını oluşturur. Parçacık başına ortalama kinetik enerji formülü:

olmak üzere, eşbölüşüm teoremi klasik mekanikten ideal gaz yasasının türetilmesinde kullanılır.[] q = (qx, qy, qz) ve p = (px, py, pz) gazdaki bir parçacığın konum ve momentum vektörü ve F de parçacığa uygulanan net kuvvet olsun;

Buradaki, ilk denklem Newton'un ikinci yasasıdır ve ikinci sırada Hamilton denklemleri ve eşbölüşüm teoremii kullanılır. N parçacıklı bir sistem için,

formülü sağlanır. Newton'un üçüncü yasası ve ideal gaz varsayımı ile sisteme uygulanan net kuvvet kabın duvarlarının uyguladığı kuvvettir ve bu kuvvet gazın P basıncı ile verilir. Dolayısıyla

sonucuna ulaşılır. Buradaki dS kabın duvarları boyunca sonsuz küçük alan elemanıdır. Konum vektörünün diverjansı q,

olduğundan diverjans teoremi

olarak ifade edilir. Buradaki dV kab içindeki sonsuz küçük hacim elemanı ve V kabın toplam hacmidir.

Bu eşitliklerin bir araya getirlimesiyle

elde edilir. Bu da N parçacık için ideal gaz yasasını ifade eder:

Buradaki n = N/NA mol sayısı ve R = NAkB de gaz sabitidir. Eşbölüşüm ideal gaz yasası ve iç enerjinin türetilmesini bastitçe sağlıyor olsa da aynı sonuç alternatif bir yöntem olan bölüşüm fonksiyonunun kulanılmasıyla da elde edilebilir.[17]

Notlar

  1. ^
    • Brush, S.G. (1976). The Kind of Motion We Call Heat, Volume 1. Amsterdam: North Holland. ss. 134-159. ISBN 978-0-444-87009-4. 
    • Brush, S.G. (1976). The Kind of Motion We Call Heat, Volume 2. Amsterdam: North Holland. ss. 336-339. ISBN 978-0-444-87009-4. 
    • Waterston, J.J. (1846). "On the physics of media that are composed of free and elastic molecules in a state of motion". Roy. Soc. Proc. Cilt 5. s. 604. doi:10.1098/rspl.1843.0077. (abstract only).
    • Not published in full until "On the Physics of Media that are Composed of Free and Perfectly Elastic Molecules in a State of Motion". Philos. Trans. R. Soc. London. Cilt A183. 1893. ss. 1-79. doi:10.1098/rsta.1892.0001. 
    • Reprinted J.S. Haldane, (Ed.) (1928). The collected scientific papers of John James Waterston. Edinburgh: Oliver & Boyd. 
    • Waterston, JJ (1843). Thoughts on the Mental Functions.  (reprinted in his Papers, 3, 167, 183.)
    • Waterston, JJ (1851). "21st meeting, Transactions of the Sections". British Association Reports. Cilt 21. s. 6. 
    Waterston's key paper was written and submitted in 1845 to the Royal Society. After refusing to publish his work, the Society also refused to return his manuscript and stored it among its files. The manuscript was discovered in 1891 by Lord Rayleigh, who criticized the original reviewer for failing to recognize the significance of Waterston's work. Waterston managed to publish his ideas in 1851, and therefore has priority over Maxwell for enunciating the first version of the equipartition theorem.
  2. ^ Maxwell, JC (2003). "Illustrations of the Dynamical Theory of Gases". WD Niven (Ed.). The Scientific Papers of James Clerk Maxwell. New York: Dover. Vol.1, pp. 377-409. ISBN 978-0-486-49560-6.  Read by Prof. Maxwell at a Meeting of the British Association at Aberdeen on 21 September 1859.
  3. ^ Boltzmann, L (1871). "Einige allgemeine Sätze über Wärmegleichgewicht (Some general statements on thermal equilibrium)". Wiener Berichte. Cilt 63. ss. 679-711.  (Almanca) In this preliminary work, Boltzmann showed that the average total kinetic energy equals the average total potential energy when a system is acted upon by external harmonic forces.
  4. ^ Boltzmann, L (1876). "Über die Natur der Gasmoleküle (On the nature of gas molecules)". Wiener Berichte. Cilt 74. ss. 553-560.  (Almanca)
  5. ^ Petit, AT (1819). "Recherches sur quelques points importants de la théorie de la chaleur (Studies on key points in the theory of heat)". Annales de Chimie et de Physique. Cilt 10. ss. 395-413. 22 Ocak 2009 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Aralık 2008.  (Fransızca)
  6. ^ Pais, A (1982). Subtle is the Lord. Oxford University Press. ISBN 0-19-853907-X. 
  7. ^ Dewar, J (1872). "The Specific Heat of Carbon at High Temperatures". Philosophical Magazine. Cilt 44. s. 461. 
    Weber, HF (1872). "Die specifische Wärme des Kohlenstoffs (The specific heat of carbon)". Annalen der Physik. Cilt 147. ss. 311-319. 10 Aralık 2006 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Aralık 2008.  (Almanca)
    Weber, HF (1875). "Die specifische Wärmen der Elemente Kohlenstoff, Bor und Silicium (The specific heats of elemental carbon, boron, and silicon)". Annalen der Physik. Cilt 154. ss. 367-423, 553-582.  (Almanca)
  8. ^ de la Rive, A (1840). "Quelques recherches sur la chaleur spécifique (Some research on specific heat)". Annales de Chimie et de Physique. Cilt 75. ss. 113-144.  (Fransızca)
    Regnault, HV (1841). "Recherches sur la chaleur spécifique des corps simples et des corps composés (deuxième Mémoire) (Studies of the specific heats of simple and composite bodies)". Annales de Chimie et de Physique. Cilt 1 (3me Série). ss. 129-207. 13 Nisan 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Aralık 2008.  (Fransızca) Read at l'Académie des Sciences on 11 January 1841.
    Wigand, A (1907). "Über Temperaturabhängigkeit der spezifischen Wärme fester Elemente (On the temperature dependence of the specific heats of solids)". Annalen der Physik. Cilt 22. ss. 99-106.  (Almanca)
  9. ^ Kundt, A (1876). "Über die specifische Wärme des Quecksilbergases (On the specific heat of mercury gases)". Annalen der Physik. Cilt 157. ss. 353-369. 13 Nisan 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Aralık 2008.  (Almanca)
  10. ^ Wüller, A (1896). Lehrbuch der Experimentalphysik (Textbook of Experimental Physics). Leipzig: Teubner. Vol. 2, 507ff.  (Almanca)
  11. ^ Eucken, A (1912). "Die Molekularwärme des Wasserstoffs bei tiefen Temperaturen (The molecular specific heat of hydrogen at low temperatures)". Sitzungsberichte der königlichen Preussischen Akademie der Wissenschaften. Cilt 1912. ss. 141-151.  (Almanca)
  12. ^ Maxwell, JC (1890). "On the Dynamical Evidence of the Molecular Constitution of Bodies". WD Niven (Ed.). The Scientific Papers of James Clerk Maxwell. Cambridge: At the University Press. Vol.2, pp.418-438. ISBN 0-486-61534-0. ASIN B000GW7DXY.  A lecture delivered by Prof. Maxwell at the Chemical Society on 18 February 1875.
  13. ^ a b Kittel, C (1996). Introduction to Solid State Physics. New York: John Wiley and Sons. ss. 151-156. ISBN 978-0-471-11181-8. 
  14. ^ Boltzmann, L (1895). "On certain Questions of the Theory of Gases". Nature. Cilt 51. ss. 413-415. doi:10.1038/051413b0. 
  15. ^ Thomson, W (1904). Baltimore Lectures. Baltimore: Johns Hopkins University Press. Sec. 27.  Re-issued in 1987 by MIT Press as Kelvin's Baltimore Lectures and Modern Theoretical Physics: Historical and Philosophical Perspectives (Robert Kargon and Peter Achinstein, editors). ISBN 978-0-262-11117-1
  16. ^ Rayleigh, JWS (1900). "The Law of Partition of Kinetic Energy". Philosophical Magazine. Cilt 49. ss. 98-118. 
  17. ^ L. Vu-Quoc, Configuration integral (statistical mechanics) 28 Nisan 2012 tarihinde Wayback Machine sitesinde arşivlendi., 2008.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">İndüktans</span>

İndüktans elektromanyetizma ve elektronikte bir indüktörün manyetik alan içerisinde enerji depolama kapasitesidir. İndüktörler, bir devrede akımın değişimiyle orantılı olarak karşı voltaj üretirler. Bu özelliğe, onu karşılıklı indüktanstan ayırmak için, aynı zamanda öz indüksiyon da denir. Karşılıklı indüktans, bir devredeki indüklenen voltajın başka bir devredeki akımın zamana göre değişiminin etkisiyle oluşur.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

Fizikte ve matematikte, matematikçi Hermann Minkowski anısına adlandırılan Minkowski uzayı veya Minkowski uzayzamanı, Einstein'ın özel görelilik kuramının en uygun biçimde gösterimlendiği matematiksel yapıdır. Bu yapıda, bilinen üç uzay boyutu tek bir zaman boyutuyla birleştirilerek, uzay zamanını betimlemek için dört boyutlu bir çokkatlı oluşturulmuştur.

Klein-Gordon Denklemi, Schrödinger denkleminin bağıl/göreli (relativistik) olan versiyonudur ve atomaltı fizikte kendi ekseni etrafında dönmeyen parçacıkları tanımlamada kullanılır. Oskar Klein ve Walter Gordon tarafından bulunmuştur.

Termodinamiğin(Isıldevinimin) ikinci yasası, izole sistemlerin entropisinin asla azalamayacağını belirtir. Bunun sebebini izole sistemlerin termodinamik dengeden spontane olarak oluşmasıyla açıklar. Buna benzer olarak sürekli çalışan makinelerin ikinci kanunu imkânsızdır.

Cauchy-Schwarz eşitsizliği matematikte önemli bir eşitsizliktir. Özellikle lineer cebir, analiz, istatistik ve olasılık kuramı'nda bu eşitsizlik yoğun bir şekilde kullanılmaktadır.

<span class="mw-page-title-main">Hilbert uzayı</span>

Matematikte Hilbert uzayı, sonlu boyutlu Öklit uzayında uygulanabilen lineer cebir yöntemlerinin genelleştirilebildiği ve sonsuz boyutlu da olabilen bir vektör uzayıdır. Daha kesin olarak, bir Hilbert uzayı, uzayın tam metrik uzay olmasını sağlayan bir uzaklık fonksiyonu üreten bir iç çarpımla donatılmış bir vektör uzayıdır. Bir Hilbert uzayı, bir Banach uzayının özel bir durumudur. Matematik, fizik ve mühendislikte sıkça kullanılmaktadır. Kuantum mekaniğiyle uyumludur. Adını David Hilbert'ten almaktadır.

<span class="mw-page-title-main">Vektör alanı</span> oklid uzayının seçilen bir alt kümesinin her bir noktasında yöneyin belirlenmesidir.

Yöney alan, Öklid uzayının seçilen bir alt kümesinin her bir noktasında yöneyin belirlenmesidir. Düzlemdeki bir yöney alanı, her biri düzlemdeki bir noktaya ilişik, yönü ve büyüklüğü olan oklar topluluğu olarak düşünülebilir.

Foton polarizasyonu klasik polarize sinüsoidal düzlem elektromanyetik dalgasının kuantum mekaniksel açıklamasıdır. Bireysel foton özdurumları ya sağ ya da sol dairesel polarizasyona sahiptir. Süperpozisyon özdurumu içinde olan bir foton lineer, dairesel veya eliptik polarizasyona sahip olabilir.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

Matematikte, Green kuramı basit, kapalı bir C eğrisi etrafındaki çizgi integrali ile C eğrisinin sınırlandırdığı D düzlem bölgesi üzerindeki çift katlı integral arasındaki ilişkiyi verir. Teorem adını matematikçi George Green'den almıştır ve daha genel hâli olan Stokes teoreminin iki boyuttaki özel durumudur.

18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.

<span class="mw-page-title-main">Lagrange mekaniği</span> Klasik mekaniğin yeniden formüle edilmesi

Lagrange mekaniği, klasik mekaniğin yeniden formüle edilmesidir. İtalyan-Fransız matematikçi ve astronom Joseph-Louis Lagrange tarafından 1788’de geliştirilmiştir.

<span class="mw-page-title-main">Maxwell ilişkileri</span>

Maxwell ilişkileri İkinci dereceden türevlerin simetri ve termodinamik potansiyellerin tanımlarından türetilebilen termodinamik denklemler dizisidir. Bu ilişkiler 19.yüzyıl fizikçisi James Clerk Maxwell tarafından adlandırılmıştır.

Hamilton mekaniği klasik mekaniğin tekrar formüle edilmesiyle geliştirilmiş ve Hamilton olmayan klasik mekanik ile aynı sonuçları öngörmüş bir teoridir. Teoriye daha soyut bir bakış açısı kazandıran Hamilton mekaniği klasik mekaniğe kıyasla farklı bir matematiksel formülasyon kullanmaktadır. Tarihi açıdan önemli bir çalışma olan Hamilton mekaniği ileriki yıllarda istatistiksel mekanik ve kuantum mekaniği konularının da geliştirilmesine önemli katkılarda bulunmuştur.

Verlet entegrasyonu, Newton'un hareket denklemlerini uygulamak için kullanılan nümerik yöntemlerden biridir. Genellikle Moleküler dinamik simülasyonlarında parçacıkların bir sonraki zaman dilimindeki konumlarını belirlemek için kullanılır. Hız hesaplaması yerine sadece o anki konum, önceki konum ve o anki ivmeyi kullanan bu yöntem Euler yönteminden daha isabetlidir ve gerektirdiği işlem sayısı pek farklı değildir. İlk defa 1791 yılında Delambre tarafından kullanılmıştır ve o zamandan beri çok kez yeniden keşfedilmiştir: 1909'da Cowell and Crommelin tarafından Halley kuyruklu yıldızı'nın yörüngesini hesaplamak için veya 1907'de Carl Størmer tarafından manyetik alandaki elektrik yüklü parçacıkların yörüngesini incelemek için kullanılması gibi. Daha sonra 1960'larda Loup Verlet tarafından moleküler dinamikte kullanıldı.