Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

Matematik, fizik ve mühendislikte, Öklid vektörü veya kısaca vektör sayısal büyüklüğü ve yönü olan geometrik bir objedir. Vektör, genellikle bir doğru parçası ile özdeşleştirilir. Bir başlangıç noktası A ile bir uç noktası B'yi birleştiren bir ok şeklinde görselleştirilir ve
ile belirtilir.

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.
Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

Tork, kuvvet momenti ya da dönme momenti, bir cismin bir eksen etrafındaki dönme, bükülme veya burulma eğilimini dönme ekseni merkezine indirgeyerek ölçen fiziksel büyüklüktür. Torkun büyüklüğü moment kolu uzunluğuna, uygulanan kuvvete ve moment kolu ile kuvvet vektörü arasındaki açıya bağlıdır.
Einstein alan denklemleri ya da Einstein denklemleri, yüksek hız ve büyük kütlelerde geçerli olan uzayzamanın geometrisi ile enerji ve momentum dağılımını ilişkilendiren doğrusal olmayan diferansiyel denklemler kümesidir. Einstein, bu denklemleri ilk kez 1915 yılında yayımlamıştır.
Fizikte ve matematikte, matematikçi Hermann Minkowski anısına adlandırılan Minkowski uzayı veya Minkowski uzayzamanı, Einstein'ın özel görelilik kuramının en uygun biçimde gösterimlendiği matematiksel yapıdır. Bu yapıda, bilinen üç uzay boyutu tek bir zaman boyutuyla birleştirilerek, uzay zamanını betimlemek için dört boyutlu bir çokkatlı oluşturulmuştur.
Vektör uzayı veya Yöney uzayı, matematikte ölçeklenebilir ve eklenebilir bir nesnelerin (vektörlerin) uzayına verilen isimdir. Daha resmî bir tanımla, bir vektör uzayı, iki elemanı arasında vektör toplamasının ve skaler denilen sayılarla çarpımın tanımlı olduğu ve bunların bazı aksiyomları sağladığı kümedir. Skalerler, rasyonal veya reel sayılar kümesinden gelebilir, ama herhangi bir cisim üzerinden bir vektör uzayı oluşturmak mümkündür. Vektör uzayları, skalerlerin geldiği cisime göre reel vektör uzayı, kompleks vektör uzayı veya genel bir cisim üzerinden K vektör uzayı şeklinde adlandırılır.

Matematikte bir çizgi integrali, integrali alınan fonksiyonun bir eğri boyunca değerlendirildiği integraldir. Çeşitli farklı çizgi integralleri kullanılmaktadır. Kapalı eğrinin kullanıldığı durumlarda integrale kontür integrali denildiği de olmaktadır.
Açısal hız, bir objenin birim zamandaki açısal olarak yer değiştirme miktarına verilen isimdir. Açısal hız vektörel olup bir cismin bir eksen üzerindeki dönüş yönünü ve hızını verir. Açısal hızın SI birimi radyan/saniyedir, ancak başka birimlerde de ölçülebilir. Açısal hız genellikle omega sembolü ile gösterilir. Açısal hızın yönü genellikle dönüş düzlemine diktir ve sağ el kuralı ile bulunabilir.
Yılmaz kütleçekim kuramı, Türk teorik fizikçi Hüseyin Yılmaz (1924-2013) tarafından ortaya atılan ve daha sonra birkaç kişinin de birlikte katkı verdiği, düşük çekimli alanlarda Einstein'ın genel görelilik kuramı ile örtüşen ancak olay ufkuna izin vermeyen dolayısıyla da karadelik içermeyen klasik alanlı bir çekim kuramıdır.

Matematikte Öklid uzayı, Öklid geometrisinin üç boyutlu uzayıdır ve bu kavramlar, çok boyutlu olarak genelleştirilir. “Öklid” terimi bu uzayları, Öklid geometrisi olmayan eğimli uzaydan ve Einstein'nın genel görelilik kuramından ayırt eder. Bu adı Yunan matematikçi Öklid'den dolayı almıştır.
Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.
Matematiksel fizikte, hareket denklemi, fiziksel sistemin davranışını, sistem hareketinin zamanı ve fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemi, matematiksel fonksiyonların kümesini "devinimsel değişkenler" cinsinden izah eder. Normal olarak konumlar, koordinat ve zaman kullanılır ama diğer değişkenler de kullanılabilir: momentum bileşenleri ve zaman gibi. En genel seçim genelleştirilmiş koordinatlardır ve bu koordinatlar fiziksel sistemin karakteristiğinin herhangi bir uygun değişkeni olabilirler. Klasik mekanikte fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte öklid uzayı, eğilmiş uzay ile tanımlanmıştır. Eğer sistemin dinamiği biliniyor ise denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

Stres-enerji tensörü, fizikte uzayzaman içerisinde enerji ve momentumun özkütle ve akısını açıklayan, Newton fiziğindeki stres tensörünü genelleyen bir tensördür. Bu, maddedinin, radyasyonun ve kütleçekimsel olmayan kuvvet alanının bir özelliğidir. Stres-enerji tensörü, genel göreliliğin Einstein alan denklemlerindeki yerçekimi alanının kaynağıdır, tıpkı kütle özkütlesinin Newton yerçekiminde bu tip bir alanın kaynağı olması gibi.

Sürekli ortamlar mekaniği, ayrı parçacıklar yerine tam bir kütle olarak modellenen maddelerin mekanik davranışları ve kinematiğin analizi ile ilgilenen mekaniğin bir dalıdır. Fransız matematikçi Augustin-Louis Cauchy, 19. yüzyılda bu modelleri formüle dökmüştür, fakat bu alandaki araştırmalar günümüzde devam etmektedir.

Sabit bir eksen etrafında dönme dönme hareketinin özel bir durumudur. Sabit eksen hipotez yönünü değiştirerek bir eksen olasılığını dışlar ve salınım devinim gibi olguları tarif edemez. Euler’in dönme teoremine göre, Aynı zamanda, sabit eksenler boyunca eş zamanlı rotasyon imkânsızdır. Eğer iki rotasyona aynı anda kuvvet uygulanırsa, rotasyonun yeni ekseni oluşur.

Düzgün olmayan rasyonel temelli eğri, eğrileri ve yüzeyleri oluşturmak ve temsil etmek için bilgisayar grafiklerinde yaygın olarak kullanılan matematiksel bir modeldir. Hem analitik hem de modellenmiş şekilleri işlemek için büyük esneklik ve hassasiyet sunar. NURBS yaygın olarak bilgisayar destekli tasarım, imalat ve mühendislikte kullanılır ve IGES, STEP, ACIS ve PHIGS gibi çok sayıda endüstri çapında standardın parçasıdır. NURBS araçları ayrıca çeşitli 3B modelleme ve animasyon yazılım paketlerinde de bulunur. NURBS yüzeyleri, üç boyutlu uzayda bir yüzeye eşlenen iki parametrenin işlevleridir. Yüzeyin şekli kontrol noktaları ile belirlenir. NURBS yüzeyleri, kompakt bir biçimde basit geometrik şekilleri temsil edebilir. T-spline'lar ve alt bölme yüzeyleri, NURBS yüzeylerine kıyasla kontrol noktalarının sayısını iki kat azalttığı için karmaşık organik şekiller için daha uygundur. NURBS eğrilerini ve yüzeylerini düzenlemek oldukça sezgisel ve öngörülebilirdir. Kontrol noktaları her zaman doğrudan eğriye / yüzeye bağlanır veya bir lastik bantla bağlanmış gibi davranır. Kullanıcı arayüzünün türüne bağlı olarak, düzenleme, Bézier eğrileri için en açık ve yaygın olan bir elemanın kontrol noktaları aracılığıyla veya spline modelleme veya hiyerarşik düzenleme gibi daha yüksek seviyeli araçlar aracılığıyla gerçekleştirilebilir.

Dört boyutlu uzay (4B), üç boyutlu veya 3 boyutlu uzay kavramının matematiksel bir uzantısıdır. Üç boyutlu uzay, gündelik yaşamdaki nesnelerin boyutlarını veya konumlarını tanımlamak için yalnızca boyut adı verilen üç sayıya ihtiyaç duyulduğu gözleminin mümkün olan en basit soyutlamasıdır. Örneğin, dikdörtgen bir kutunun hacmi, uzunluğu, genişliği ve yüksekliği ölçülerek ve çarpılarak bulunur.