İçeriğe atla

Doppler etkisi

Merkezi bir dalga kaynağı sola doğru hareket ederken hareket yönü doğrultusundaki dalgaların frekanslarının zıt yöndeki dalgaların frekanslarından daha yüksek olduğu görülüyor.

Doppler etkisi (veya Doppler kayması), adını ünlü bilim insanı ve matematikçi Christian Andreas Doppler'den almakta olup, kısaca dalga özelliği gösteren herhangi bir fiziksel varlığın frekans ve dalga boyunun hareketli (yakınlaşan veya uzaklaşan) bir gözlemci tarafından farklı zaman veya konumlarda farklı algılanması olayıdır. Herhangi bir A konumundan B konumuna gitmek için fiziksel bir dalga ortamı'na ihtiyaç duyan dalgalar (örn. ses dalgaları veya su dalgaları) için Doppler Etkisi hesaplamaları yapılırken, dalga kaynağı ve gözlemcinin birbirine göre konum, yön ve hızlarının yanında dalganın içinde veya üzerinde hareket ettiği dalga orta yapısı (yoğunluk, hacim, iletkenlik katsayısı, kimyasal özellikleri, vb.) dikkate alınmak zorundadır. Eğer söz konusu dalga herhangi bir A konumundan B konumuna gitmek için fiziksel bir dalga ortamına ihtiyaç duymuyor ise (örn. ışık, radyo dalgaları veya radyasyon), Doppler Etkisi hesaplamalarında sadece dalga kaynağının ve gözlemcinin birbirine göre birim zamandaki konumlarının değerlendirilmesi yeterlidir.

Tarihçe

Doppler etkisi ilk olarak 1842 yılında Avusturyalı bilim insanı Christian Andreas Doppler tarafından (Über das farbige Licht der Doppelsterne und einige andere Gestirne des Himmels söylemi ile) matematiksel bir hipotez olarak ortaya atılmıştır. 1845 yılında Hollandalı fizikçi Christophorus Ballot tarafından ses dalgaları kullanılarak test edilmiş ve "ses kaynağı kendisine yakınlaşırken duyduğu frekansın yükseldiğini, uzaklaşırken ise düştüğünü ispatladığını" söylemesi ile resmen onaylanmıştır. Aynı etki Ballot veya Doppler'dan bağımsız olarak 1848 yılında Fransız fizikçi Hippolyte Fizeau tarafından elektromanyetik dalgalar üzerinde de keşfedilmiştir. Bu yüzden nadiren de olsa bazı bilim çevrelerince Doppler-Fizeau etkisi olarak da bilinir.

Matematiksel çözümleme

Doppler etkisi konusunda bilinmesi gereken en önemli husus, her ne kadar gözlemci dalga frekansının kendi hareketi ya da dalga kaynağının hareketi yüzünden değiştiğini görse de, aslında kaynağın yaydığı dalganın frekansının sabit kaldığı gerçeğidir. Tam olarak ne olduğunu daha iyi anlamak icin şöyle bir örnek üzerinde düşünelim: Siz yerinizde ve hareketsizsiniz. Bir arkadaşınız sizden 10 metre uzakta duruyor ve size her saniyede bir elindeki tenis toplarından birini fırlatıyor. Burada arkadaşınızın topları her seferinde aynı doğru boyunca ve aynı hızda attığını varsayalım. Eğer arkadaşınız da hareketsiz ise her saniyede bir 10 metre yol kateden tenis toplarından biri size ulaşacaktır. Şimdi arkadaşınızın yine her saniyede bir top fırlattığını (yani aslında top fırlatma frekansı değişmiyor), ancak bu sefer size doğru yürümeye başladığını öngörelim. Bu durumda size ulaşan iki top arasındaki süre 1 saniyeden daha kısa olacaktır, çünkü toplar her seferinde 10 metre, 9 metre, 8 metre şeklinde daha az mesafe katettikten sonra size ulaşacaktır. Elbette aynı etkinin zıddı arkadaşınız sizden uzaklaşırken de geçerli olacaktır. Bir başka deyişle, toplar arkadaşınızın elinden her zaman saniyede bir çıktığı halde, sizin ya da arkadaşınızın hareketi yüzünden size azalan ya da artan zamanlarda ulaşacaktır. Bu da doğal olarak arkadaşınızın size topu farklı zamanlarda fırlattığını düşünmenize sebep olur. Yani aslında Doppler Etkisi'nde "etkilenen" asıl fiziksel değişken dalga boyu'dur. Elbette dalga boyu ile frekans ters orantılı olduğundan gözlemciye göre dalga kaynağının frekansı da değişiyor gibi görünür.

Eğer (f0) frekansında dalga yayan hareketli bir kaynak bu yayılımı sadece kendinin ve bir gözlemcinin bulunduğu sabit bir dalga ortamında yapıyorsa, o zaman bu dalga ortamına göre hareketsiz olan bir gözlemcinin göreceği frekansı (f) bulmak için:

formülü kullanılır. Burada (v) dalga ortamındaki dalgaların hızı, (vs, r) ise kaynağın sabit olan dalga ortamına göre (eğer gözlemciye doğru hareket ediyorsa (-) eksi bir değer, gözlemciden uzaklaşacak şekilde hareket ediyorsa (+) artı bir değer) hızıdır. Benzer bir analiz sabit bir dalga kaynağı ile hareketli bir gözlemci için asağıdaki gibidir. (vo) = Gözlemcinin dalga ortamına göre hızı.

Yukarıdaki örnekte de gördüğümüze benzer şekilde, bu sefer gözlemcinin dalga kaynağından uzaklaşması durumunda (vo) değeri (+) artı, yakınlaşması durumunda ise (-) eksi olur.

Matematiksel olarak bu iki formül elbette tek bir vektörel eşitlik olarak genelleştirilebilir. Koordinat sisteminin dalga ortamı üzerindeki herhangi bir noktanın konumunu verdiğini ve bu ortamda ses hızı'nin () olduğunu varsayalım ve söz konusu ortamda () kaynağının () hızıyla hareket edip çevresine () frekansında dalgalar yaydığını öngörelim. Bu dalga ortamında bir de () hızıyla hareket eden bir () gözlemcisi olsun. Dalga kaynağı () ile gözlemci () arasındaki matematik vektörün ise () olduğunu öngörelim. (Yani )

Bu durumda gözlemcinin algılayacağı frekans ():

eşitliğinden bulunabilir. Eğer ise, o zaman algılanan frekanstaki değişim daha çok dalga kaynağı ve gözlemcinin birbirine göre hızlarına bağlı olur:

Veya alternatif olarak:

Doppler'in bu analizinin ışık ışınları için de geçerli olabilmesi için yapılan ilk çalışma Hippolyte Fizeau tarafından yürütülmüştür. Ancak ışık A noktasından B noktasına gidebilmek için belli bir dalga ortamına gerek duymaz (örneğin sonsuz boşluk olan uzayda kolayca yol alır) ve Doppler Etkisi'nin ışık ışınlarına nasıl doğru bir şekilde uygulanabileceğinin anlaşılabilmesi için Einstein'in Özel Görelilik (izafiyet) teorisinin kullanımına ihtiyaç vardır.

Kozmolojik alanda kullanımı

Doppler kayması ve kozmolojik gelişimde yıldız ışımalarının önemli katkıları olmuştur. Yıldızların hızları doppler kayması sayesinde saptanmaktadır. Spektrum Atomların ya da moleküllerin yayınladığı ışınımdır. Bunlar ışınımların çok dar frekans bandı aralıklarıdır. Edwin Hubble doppler kaymasının uygulamasını yapmıştır. Birçok yıldızın spektrumunu incelemiş, Dünya'ya uzaklıkları hakkında yıldızların parlaklıklarını kullanarak tahminde bulunmuş, yıldızların çoğunun spektrumunun kırmızıya kaydığını ve bu sonuçla yıldızların olduğu galaksilerin bizden uzaklaştığını söylemiştir.[1][2] Bunun yanında uzaklaşma hızlarının Dünya'ya olan uzaklıklara orantılı olduğunu da söylemiştir. Hubble kanunu sayesinde doppler kaymasının ölçümleri ile birlikte galaksilerde olan uzaklıkların hesaplanması olanağı sağlamıştır. Astronomlar kırmızıya kaymaların olduğu radyasyon kaynakları (örnek olarak yıldız benzeri cisimler sayılabilir). Bu kaynakların çok fazla enerji yaydığını söylemişler. Bu enerjinin maddelerin aşırı ivme kazanmasından dolayı böyle bir büyüklükte bir ışınıma neden olduğu belirtilmiştir.[3][4]

Kaynakça

  1. ^ Effects of Red Shifts on the Distribution of Nebulae 12 Ekim 2017 tarihinde Wayback Machine sitesinde arşivlendi., Hubble, Edwin, Astrophysical Journal, vol. 84, p.517, The SAO/NASA Astrophysics Data System
  2. ^ Red-shifts and the distribution of nebul&aelig 7 Kasım 2017 tarihinde Wayback Machine sitesinde arşivlendi., Hubble, Edwin, Monthly Notices of the Royal Astronomical Society, Vol. 97, p.513, The SAO/NASA Astrophysics Data System
  3. ^ Temel fizik cilt 2 PROF. DR. CENGİZ YALÇIN
  4. ^ FİZİĞİN TEMELLERİ MEKANİK VE TERMODİNAMİK PROF.DRCENGİZ YALÇIN

Dış bağlantılar

İlgili Araştırma Makaleleri

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Frekans</span> bir olayın birim zaman (genel olarak 1 saniye) içinde hangi sıklıkla, kaç defa tekrarlandığının ölçümü

Frekans veya titreşim sayısı bir olayın birim zaman içinde hangi sıklıkla, kaç defa tekrarlandığının ölçümüdür, matematiksel ifadeyle çarpmaya göre tersi ise periyot olarak adlandırılır.

<span class="mw-page-title-main">Kinetik enerji</span> bir cismin harekiyle oluşan enerji

Kinetik enerji, fiziksel bir cismin hareketinden dolayı sahip olduğu enerjidir.

Planck sabiti (h), bir fizik sabitidir ve kuantum mekaniğindeki aksiyonum kuantumu için kullanılır. Değeri h= 6.62607015×10−34 J⋅s' dir. Planck sabiti daha önceleri bir Fotonun enerjisi (E) ile elektromanyetik dalgasının frekansı (ν) arasında bir orantı idi. Enerji ile frekans arasındaki bu ilişki Planck ilişkisi veya Planck formülü olarak adlandırılır:

<span class="mw-page-title-main">Snell yasası</span> Kırılma açıları için madde formülü

Snell yasası ışığın geldiği ortamın kırıcılık indisiyle geliş doğrultusunun normalle yaptığı açının sinüsünün, ışığın gittiği ortamın kırıcılık indisiyle gidiş doğrultusunun normalle yaptığı açının sinüsüyle çarpımına eşitlenmesiyle oluşan formüle dayalı fiziğin optik dalında yer alan bir yasadır.

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

<span class="mw-page-title-main">Dikeyhız</span> nesne hızının, nesne ile nokta arasındaki yarıçapı birleştiren yöne işaret eden bileşeni

Dikey hız, bir hedefin bir gözlemciye göre iki nokta arasındaki vektörel yer değiştirme miktarının değişim hızıdır. Hedef-gözlemci izafi hızının, iki noktayı birleştiren izafi yön veya görüş çizgisi üzerindeki vektörel izdüşümü olarak tanımlanır. Daha basitçe, bir hedefin bir gözlemciye göre, görüş çizgisi boyunca yaklaşma veya uzaklaşma hızıdır.

<span class="mw-page-title-main">Titreşim</span>

Titreşim bir denge noktası etrafındaki mekanik salınımdır. Bu salınımlar bir sarkaçın hareketi gibi periyodik olabileceği gibi çakıllı bir yolda tekerleğin hareketi gibi rastgele de olabilir.

Radyo frekansı yayıncılıkta bir bilgi sinyali ile modüle edilmiş olan taşıyıcı sinyal anlamına gelir. Ancak, bu isim zamanla modüle edilsin, edilmesin, yüksek frekans anlamına da kullanılmaya başlanmıştır.

<span class="mw-page-title-main">Klasik elektromanyetizma</span>

Klasik elektromanyetizm, klasik elektromıknatıslık ya da klasik elektrodinamik teorik fiziğin elektrik akımı ve elektriksel yükler arasındaki kuvvetlerin sonuçlarını inceleyen dalıdır. kuantum mekaniksel etkilerin ihmal edilebilir derecede küçük olmasını sağlayacak kadar büyük ölçütlü sistemler için elektromanyetik fenomenlerin mükemmel bir açıklamasını sunar.

<span class="mw-page-title-main">Liénard-Wiechert potansiyelleri</span>

Liénard-Wiechert potansiyelleri yüklü bir noktasal parçacığın hareketi esnasında oluşan klasik elektromanyetik etkiyi bir vektör potansiyeli ve bir skaler potansiyel cinsinden ifade eder. Maxwell denklemlerinin doğrudan bir sonucu olarak bu potansiyel relativistik olarak doğru, tam, zamana bağlı etkileri de içeren, noktasal parçacığın hareketine herhangi bir sınır konulmaksızın en genel durum için geçerli olan fakat kuantum mekaniğinin öngördüğü etkileri açıklayamayan elektromanyetik bir alan tanımlar. Dalga hareketi formunda yayılan elektromanyetik ışıma bu potansiyellerden elde edilebilir.

<span class="mw-page-title-main">Compton saçılması</span>

Compton olayı, yüksek enerjili X ışınlarının fotonu ile karbon atomunun serbest elektronunun çarpıştırılması sonucu elektronun ve fotonun şekildeki gibi saçılması olayıdır.

Fizikte konuşlanma sistemi farklı zaman dilimlerinde nesnelerin konum ve yönelim gibi özelliklerini belirlemek ve ölçmek için kullanılan bir koordinat sistemini ifade etmektedir. Ayrıca bu özelliklerin temsilinde kullanılan kümelerini de içerebilmektedir. Daha zayıf bir anlamda, bir konuşlanma sistemi yalnızca koordinatları betimlememektedir, aynı zamanda bu sistemde hareket eden nesnelerin ayırt edilmesinde her zaman dilimi için aynı üç boyutlu alanları da tanımlamaktadır.

<span class="mw-page-title-main">Kara cisim ışınımı</span> opak ve fiziksel yansıma gerçekleştirmeyen siyah cisimden yayılan ve sabit tutulan tekdüze ısı

Siyah cisim ışıması içinde elektromanyetik ışıma ya da çevresinde termodinamik dengeyi sağlayan ya da siyah cisim tarafından yayılan ve sabit tutulan tekdüze ısıdır. Işıma çok özel bir spektruma ve sadece cismin sıcaklığına bağlı olan bir yoğunluğa sahiptir. Termal ışıma, birçok sıradan obje tarafından kendiliğinden yayılan bir siyah cisim ışıması sayılabilecek türden bir ışımadır. Tamamen yalıtılmış bir termal denge ortamı siyah cisim ışımasını kapsar ve bir boşluk boyunca kendi duvarını yaratarak yayılır, boşluğun etkisi göz ardı edilebilecek kadar küçüktür. Siyah cisim oda sıcaklığında siyah görünür, yaydığı enerjinin çoğu kızılötesidir ve insan gözü ile fark edilemez. Daha yüksek sıcaklıklarda, siyah cisimlerin özkütleleri artarken renkleri de soluk kırmızıdan kör edecek şekilde parlaklığı olan mavi-beyaza dönüşür. Gezegenler ve yıldızlar kendi sistemleri ve siyah cisimler ile termal dengede olmamalarına rağmen, yaydıkları enerji siyah cisim ışımasına en yakın olaydır. Kara delikler siyah cisim olarak sayılabilirler ve kütlelerine bağlı bir sıcaklıkta siyah cisim ışıması yaptıklarına inanılır . Siyah Cisim terimi, ilk olarak Gustav Kirchhoff tarafından 1860 yılında kullanılmıştır.

<span class="mw-page-title-main">Dalga (fizik)</span> uzayda ve maddeden geçen salınım

Dalga, bir fizik terimi olarak uzayda ve maddede yayılan ve enerjinin taşınmasına yol açan titreşime denir. Dalga hareketi, orta parçaların yer değişimi sıklıkla olmadan, yani çok az ya da hiç kütle taşınımı olmadan, enerjiyi bir yerden başka bir yere taşır. Dalgalar sabit konumlarda oluşan titreşimlerden oluşurlar ve zamanla nasıl ilerlediğini gösteren bir dalga denklemi ile tanımlanırlar. Bu denklemin matematiksel tanımı dalga çeşidine göre farklılık gösterir.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

Relativistik Işıma doppler ışıması ya da doppler artması olarak da bilinir. Maddenin ışık hızına yakın bir hızda yayılan parlaklığını açıklayan bir işlemdir. Astronomi kaynaklarında, katılımlarla büyüyen sıkışık madde kökeninden gelen Relativistik jet plazmalarında Relativistik ışınma zıt yönlü meydana gelir. Katılımlarla büyüyen sıkışık madde ve Relativistik jetler sırayla gözlemlenmiş olan olayları açıklamayı hatırlatıyor. X ışını ikilisi, gama ışın patlaması ve etkin çekirdekli galaksi.(Kuasar katılımlarla büyüyen maddeyle ilişkilendirilebilir ama sadece etkin çekirdekli galaksinin bir çeşidi olarak düşünülürse.) Işıma, herhangi bir şeyin parlaklığını etkiler. Mesela deniz feneri ışık kaynağının görünümünü etkiler. Işık kaynağı gemiye görünmez ya da sönük gelir eğer ışık kaynağı gemiye doğru ışımıyorsa ki o zaman çok parlak bir ışık olarak gemiden gözükür. Bu deniz feneri etkisi, Relativistik ışımada hareket yönünün ne kadar önemli olduğunu örnekler(gözlemciye göre). Eğer elektromanyetik radyasyon yayan az miktarda gaz gözlemciye doğru hareket ediyorsa durgun halinden daha parlak gelecektir. Eğer gaz gözlemciye doğru hareket etmiyorsa durgun halinden daha sönük gelecektir. Bu deniz feneri etkisinin önemi jetler tarafından tespit edilmiştir. M87 adlı galaksideki ikiz jetlerden biri dünyaya doğru diğeri ise ona zıt yönde giderken ışımanın nasıl görünümlerini etkilediğini gösterir. M87 nin dünyaya doğru hareket eden jeti teleskopla rahatça görülebilir ve ışıma yüzünden çok daha parlaktır. M87 deki diğer jet ise ışıma nedeniyle görünmeyecek kadar sönüktür. 3C31 M87 den daha farklıdır çünkü her iki jet de görüş açımıza neredeyse 90 derece açıdadır ve bu nedenle aynı yoğunlukta ışınlamaya maruz kalır. M87 dekinin aksine, 3C31 deki her iki jet de gözükür. Relativistik olarak hareket eden cisimler birçok fiziksel nedenden dolayı ışıma yapar. Işığın sapması, cismin hareket yönü boyunca çok sayıda fotonun yayılmasına neden olur. Doppler etkisi fotonların enerjisini değiştirir. Son olarak, cisim tarafından yayılan fotonların hareketi boyunca ölçülen zaman aralığı ile dünyada gözlemci tarafından ölçülen zaman farklıdır. Bunun nedeni ise, zaman genişlemesi ve fotonun geliş zamanı etkisinden dolayıdır. Tüm bu etkiler, Relativistik doppler etkisini tanımlayan denklemler tarafından belirtilen hareket eden cismin parlaklığını gösterir.

Matematiksel fizikte, hareket denklemi, fiziksel sistemin davranışını, sistem hareketinin zamanı ve fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemi, matematiksel fonksiyonların kümesini "devinimsel değişkenler" cinsinden izah eder. Normal olarak konumlar, koordinat ve zaman kullanılır ama diğer değişkenler de kullanılabilir: momentum bileşenleri ve zaman gibi. En genel seçim genelleştirilmiş koordinatlardır ve bu koordinatlar fiziksel sistemin karakteristiğinin herhangi bir uygun değişkeni olabilirler. Klasik mekanikte fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte öklid uzayı, eğilmiş uzay ile tanımlanmıştır. Eğer sistemin dinamiği biliniyor ise denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

Doppler genişlemesi Doppler etkisi dolayısıyla atom veya moleküllerin hızlarının dağılımının neden olduğu bir genişlemedir. Yayan parçacıkların farklı hızları farklı Doppler kaymalarıyla sonuçlanır, bunların toptan sonucu da çizgi genişlemesidir. En son elde edilen çizgi profili ise Doppler profili olarak bilinir. Termal Doppler genişlemesi, parçacıkların termal hareketinden dolayı, özel bir husustur. Genişleme sadece spektral çizginin frekansına ve yayan parçacıkların kütlesine bağlıdır ve böylece bir yayıcı cismin sıcaklığını artırmak için kullanılabilir.

<span class="mw-page-title-main">Göreli Doppler etkisi</span>

Relativistik Doppler Etkisi ya da Göreli Doppler etkisi, adını ünlü bilim insanı ve matematikçi Christian Andreas Doppler'dan almakta olup, kısaca dalga özelliği gösteren herhangi bir fiziksel varlığın frekans dalga boyu Dalga boyu, bir dalga görüntüsünün tekrarlanan birimleri arasındaki mesafedir. Yaygın olarak Yunanca lamda (λ) harfi ile gösterilmektedir. hareketli bir gözlemci tarafından farklı zaman ve/veya konumlarda farklı algılanması olayıdır. Bu da göreli olduğunu belirtir. Herhangi bir A konumundan B konumuna gitmek icin fiziksel bir dalga ortamı'na ihtiyaç duyan dalgalar icin Doppler Etkisi hesaplamaları yapılırken, dalga kaynağı ve gözlemcinin birbirine göre konum, yön ve hızlarının yanında dalganın içinde veya üzerinde hareket ettiği dalga ortamının da fiziksel yapısı dikkate alınmak zorundadır. Eğer söz konusu dalga herhangi bir A konumundan B konumuna gitmek için fiziksel bir dalga ortamına ihtiyaç duymuyor ise Doppler Etkisi hesaplamalarında sadece dalga kaynağının ve gözlemcinin birbirine göre birim zamandaki konumlarının değerlendirilmesi yeterlidir. Göreli doppler olayı değişikliği olduğu frekansa ışık kaynağının göreceli hareketine göredir ve, Göreli Doppler etkisi relativistik olmayan farklı Doppler etkisi denklemleri dahil olarak zaman genişlemesi etkisini özel görelilik ve referans noktası olarak yayılma ortamı dahil değildir. Lorentz simetri gözlenen frekanslar için toplam farkı anlatır.