İçeriğe atla

Doğrusallık

Doğrusallık, grafiksel olarak düz bir çizgi olarak gösterilebilen matematiksel bir ilişkinin (fonksiyonun) özelliğidir. Doğrusallık, orantılılık kavramı ile yakından ilişkilidir. Fizikteki örnekler, bir elektrik iletkenindeki (Ohm yasası) voltaj ve akımın doğrusal ilişkisini ve kütle ve ağırlık ilişkisini içermektedir. Daha karmaşık ilişkiler doğrusal olarak sayılmamaktadır.

Birden fazla boyuttaki fonksiyonlar için genelleştirilmiş olan lineerlik, bir fonksiyonun toplama ve ölçekleme ile uyumlu olma özelliği anlamına gelmektedir. Aynı zamanda süperpozisyon ilkesi olarak da bilinmektedir.

Lineer kelimesi Latince lineeris'ten gelmektedir. "Bir çizgiyle ilgili veya ona benzeyen" anlamına gelmektedir.

Matematikteki yeri

Matematikte, doğrusal bir harita veya doğrusal fonksiyon f(x), iki özelliği karşılayan bir fonksiyondur:[1]

  • Toplanabilirlik: f(x + y) = f(x) + f(y).
  • 1derecenin homojenliği fx) = α f(x) tüm α için.

Bu özellikler süperpozisyon ilkesi olarak bilinmektedir. Bu tanımda x mutlaka gerçek bir sayı değildir. Ancak genel olarak herhangi bir vektör uzayının bir elemanı olmaktadır. Doğrusal fonksiyonun daha özel bir tanımı, doğrusal harita tanımıyla örtüşmemektedir. Temel matematikte kullanılmaktadır.

Toplamsallık tek başına rasyonel α için homojenliği ifade eder. ve eşitlikleri, matematiksel tümevarım yoluyla herhangi bir doğal sayı n için yazılmaktadır. Ayrıca, eşitlikleri de yazılmaktadır. Gerçeklerdeki rasyonel sayıların yoğunluğu, herhangi bir toplamsal sürekli fonksiyonun herhangi bir gerçek sayı α için homojen olduğunu ve dolayısıyla lineer olduğunu göstermektedir.

Doğrusallık kavramı, doğrusal operatörlere genişletilebilmektedir. Doğrusal operatörlerin önemli örnekleri, bir diferansiyel operatör olarak kabul edilen türevi ve diğer operatörleri içermektedir. Bir diferansiyel denklem lineer biçimde ifade edilebildiğinde, genellikle denklemi daha küçük parçalara bölerek, bu parçaların her birini çezmektedir. Ayrıca çözümleri toplayarak çözülebilmektedir.

Doğrusal cebir, vektörler, vektör uzayları ("doğrusal uzaylar" olarak da adlandırılır), doğrusal dönüşümler ("doğrusal haritalar" olarak da adlandırılır) ve doğrusal denklem sistemleri ile ilgili matematiğin dalıdır.

Doğrusal polinomlar

Yukarıdaki tanımdan farklı bir kullanımda, 1. dereceden bir polinomun lineer olduğu söylenmektedir. Çünkü bu formun bir fonksiyonunun grafiği düz bir çizgidir.[2]

Gerçekler üzerinde, doğrusal bir denklem şu şekillerden biridir:

burada m genellikle eğim veya gradyan olarak adlandırılmaktadır. "b", fonksiyonun grafiği ile y ekseni arasındaki kesişme noktasını veren y-kesme noktasını temsil etmektedir.

Lineer teriminin bu kullanımının yukarıdaki bölümdekiyle aynı olmadığına dikkat edilmelidir. Çünkü reel sayılar üzerindeki lineer polinomlar genel olarak ne toplama ne de homojenliği sağlamamaktadır. Aslında, bunu ancak ve ancak b = 0 ise yapmaktadırlar. Dolayısıyla, eğer b ≠ 0 ise, fonksiyon genellikle afin fonksiyon olarak adlandırılır.

Boole fonksiyonları

Doğrusal bir Boole fonksiyonunun Hasse diyagramı

Boole cebrinde, lineer bir f fonksiyonu,şu şekilde var olan bir fonksiyondur.

,

Eğer, , yukarıdaki fonksiyon lineer cebirde afin (lineer olmayan) olarak kabul edilmektedir.

Boolean işlevi, işlevin doğruluk tablosu için aşağıdakilerden biri geçerliyse doğrusaldır:

  1. Fonksiyonun doğruluk değerinin T olduğu her satırda, argümanlara atanan tek sayıda Ts vardır ve fonksiyonun F olduğu her satırda argümanlara atanan çift sayıda Ts vardır. Özellikle, f(F, F, ..., F) = F, bu işlevler, Boolean vektör uzayı üzerindeki doğrusal haritalara karşılık gelmektedir.
  2. Fonksiyonun değerinin T olduğu her satırda, fonksiyonun argümanlarına atanan çift sayıda T vardır. Ayrıca, fonksiyonun doğruluk değerinin F olduğu her satırda, argümanlara atanan tek sayıda T vardır.Bu durumda, f(F, F, ..., F) = T eşitliği oluşturulmaktadır.

Bunu ifade etmenin bir başka yolu da, her bir değişkenin işlemin doğruluk değerinde her zaman bir fark yaratması veya hiçbir zaman fark yaratmamasıdır. Olumsuzlama, Mantıksal iki koşullu, özel veya, totoloji ve çelişki doğrusal fonksiyonlardır.

Fizikteki yeri

Fizikte doğrusallık, birçok sistemi yöneten diferansiyel denklemlerin bir özelliğidir. Maxwell denklemleri veya difüzyon denklemi örnek olabilirler.[3]

Homojen bir diferansiyel denklemin lineerliği, eğer iki fonksiyon f ve g denklemin çözümleri ise, o zaman herhangi bir lineer af + bg kombinasyonunun da olduğu anlamına gelmektedir.

Enstrümantasyonda doğrusallık, bir girdi değişkenindeki belirli bir değişikliğin, ölçüm cihazının çıktısında aynı değişikliği vermesi anlamına gelmektedir. Bu, bilimsel çalışmalarda oldukça arzu edilmektedir. Genel olarak, enstrümanlar belirli bir aralıkta doğrusala yakındır ve en çok bu aralıkta faydalıdır. Buna karşılık, insan duyuları oldukça doğrusal değildir. Örneğin, beyin, belirli bir mutlak foton eşiğini aşmadığı sürece gelen ışığı tamamen görmezden gelmektedir.

Elektronikteki yeri

Elektronikte, bir cihazın lineer çalışma bölgesi, örneğin bir transistör, bir bağımlı değişkenin (transistör kollektör akımı gibi) bağımsız bir değişkenle (baz akımı gibi) doğru orantılı olduğu yerdir. Bu, bir analog çıkışın, tipik olarak daha yüksek genliğe sahip (güçlendirilmiş) bir girişin doğru bir temsili olmasını sağlamaktadır. Tipik bir lineer ekipman örneği, bir sinyali dalga biçimini değiştirmeden yükseltmesi gereken yüksek kaliteli bir ses yükselticisidir. Diğerleri doğrusal filtreler, doğrusal düzenleyiciler ve genel olarak doğrusal yükselticilerdir.

Bilimsel ve teknolojik uygulamaların çoğunda, matematiksel uygulamalardan farklı olarak, bir şey, karakteristik yaklaşık olarak ancak tam düz bir çizgi değilse, doğrusal olarak tanımlanmaktadır. Doğrusallık yalnızca belirli bir çalışma bölgesi içinde geçerli olmaktadır. Örneğin, yüksek doğruluklu bir amplifikatör küçük bir sinyali bozmaktadır. Ancak kabul edilebilecek kadar az olmalıdır. (kabul edilebilir ancak kusurlu doğrusallık). Ayrıca, giriş belirli bir değeri aşarsa çok kötü şekilde bozulmaktadır.[4]

İntegral doğrusallık

Bir miktarı başka bir niceliğe dönüştüren bir elektronik cihaz için Bertram S. Kolts şöyle yazmaktadır:[5][6]

Yaygın kullanımda integral doğrusallık için bağımsız doğrusallık, sıfır tabanlı doğrusallık ve uç veya uç nokta doğrusallığı olaraküç temel tanım vardır. Her durumda, doğrusallık, cihazın belirli bir çalışma aralığındaki gerçek performansının düz bir çizgiye ne kadar iyi yaklaştığını tanımlamaktadır. Doğrusallık genellikle ideal bir düz çizgiden sapma veya doğrusal olmama olarak ölçülmektedir. Tipik olarak tam ölçeğin yüzdesi veya tam ölçeğin ppm (milyonda parça) cinsinden ifade edilmektedir. Tipik olarak, düz çizgi, verilerin en küçük kareler sığdırılmasıyla elde edilmektedir. Üç tanım, düz çizginin gerçek cihazın performansına göre konumlanma şekline bağlı olarak değişiklik göstermektedir. Ayrıca, bu tanımların üçü de, gerçek cihazın performans özelliklerinde mevcut olabilecek herhangi bir kazancı veya ofset hatalarını göz ardı etmektedir.

Askeriyedeki taktiksel oluşumlar

Askeri taktik oluşumlarda, "doğrusal oluşumlar", tabancacılar tarafından korunan falanks benzeri mızrak oluşumlarından başlamıştır. Giderek daha az mızrakla korunan sığ tabanca oluşumlarına doğru uyarlanmıştır. Bu tür oluşum, Wellington'un 'İnce Kırmızı Çizgi' çağında en uç noktasına kadar giderek incelmektedir. Sonunda, arkadan doldurmalı tüfeğin icadı, askerlerin herhangi bir şekilde büyük ölçekli oluşumlar tarafından desteklenmeyen küçük, hareketli birimlerde hareket etmelerine ve ateş etmelerine izin verdiğinde, yerini çatışma düzeni almıştır.

Sanattaki yeri

Doğrusal, İsviçreli sanat tarihçisi Heinrich Wölfflin tarafından "Klasik" veya Rönesans sanatını Barok'tan ayırmak için önerilen beş kategoriden biridir. Wölfflin'e göre, on beşinci ve on altıncı yüzyılın başlarındaki ressamlar (Leonardo da Vinci, Raphael veya Albrecht Dürer), on yedinci yüzyılın "resimsel" Barok ressamlarından (Peter Paul Rubens, Rembrandt ve Velázquez) daha doğrusaldır.[7] Çünkü esas olarak şekil oluşturmak için ana hatları kullanmaktadırlar. Sanatta doğrusallığa dijital sanatta da başvurulmaktadır. Örneğin, hiper metin kurgusu doğrusal olmayan anlatıya bir örnek olmaktadır. Ancak doğrusal bir yolu izleyerek belirli, organize bir şekilde gitmek için tasarlanmış web siteleri de bulunmaktadır.

Müzikteki yeri

Müzikte doğrusal yön, eşzamanlılık veya dikey yönün aksine, aralıklı veya ardışık melodiler ile meydana gelmektedir.

Ölçüm

Ölçümde, "doğrusal ayak" terimi, genellikle genişliğe bakılmaksızın düz bir malzeme hattındaki (kereste veya kumaş gibi) ayak sayısını ifade etmektedir. Bazen "çizgisel ayaklar" olarak adlandırılmaktadırlar. Bununla birlikte, "çizgisel" tipik olarak ata veya kalıtım çizgilerini belirtmek için kullanılmaktadır.

Ayrıca bakılabilir

Kaynakça

  1. ^ Edwards, Harold M. (1995). Linear Algebra. Springer. s. 78. ISBN 9780817637316. 18 Nisan 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Haziran 2021. 
  2. ^ Stewart, James (2008). Calculus : early transcendentals. 6th ed. Belmont, CA: Thomson Brooks/Cole. ISBN 978-0-495-01166-8. OCLC 144526840. 
  3. ^ Evans, Lawrence C. (2010) [1998], Partial differential equations (PDF), 2nd, 19, Providence, R.I.: American Mathematical Society, doi:10.1090/gsm/019, ISBN 978-0-8218-4974-3, MR 2597943, 23 Ekim 2020 tarihinde kaynağından arşivlendi (PDF), erişim tarihi: 13 Haziran 2021 
  4. ^ Whitaker, Jerry C. (2002). The RF transmission systems handbook. CRC Press. ISBN 978-0-8493-0973-1. 11 Nisan 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Haziran 2021. 
  5. ^ Kolts, Bertram S. (2005). "Understanding Linearity and Monotonicity" (PDF). analogZONE. 4 Şubat 2012 tarihinde kaynağından (PDF) arşivlendi. Erişim tarihi: 24 Eylül 2014. 
  6. ^ Kolts, Bertram S. (2005). "Understanding Linearity and Monotonicity". Foreign Electronic Measurement Technology. 24 (5): 30-31. 27 Şubat 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Eylül 2014. 
  7. ^ Wölfflin, Heinrich (1950). Hottinger, M.D. (Ed.). Principles of Art History: The Problem of the Development of Style in Later Art. New York: Dover. ss. 18-72. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">Diferansiyel denklem</span>

Matematikte, diferansiyel denklem, bir ya da birden fazla fonksiyonu ve bunların türevlerini ilişkilendiren denklemdir. Fizik, kimya, mühendislik, biyoloji ve ekonomi alanlarında matematiksel modeller genellikle diferansiyel denklemler kullanılarak ifade edilirler. Bu denklemlerde, fonksiyonlar genellikle fiziksel ya da finansal değerlere, fonksiyon türevleriyse değerlerin değişim hızlarına denk gelir.

<span class="mw-page-title-main">Adi diferansiyel denklem</span>

Matematikte adi diferansiyel denklem, tek değişkenli fonksiyonların türevlerini ilişkilendiren diferansiyel denklem çeşididir. Adi diferansiyel denklemler adı daha yaygındır. Kapalı olarak şeklinde gösterilirler. Bu ifadede denklemin derecesini gosterir.

Doğrusal olmayan diferansiyel denlemler, doğrusal diferansiyel denklemlere yapı olarak benzemektedir. Ancak doğrusal olmayan diferansiyel denlemlerde doğrusallığı bozan terim olarak trigonometrik ifadeler, logaritmik ve daha büyük dereceden terimler bulunmaktadır. Eğer bir diferansiyel denkleminde bu tür ifadeler mevcutsa o denklemin doğrusal olmadığı anlaşılır.

Doğrusal dönüşüm, bir fonksiyon çeşididir. T, M boyutlu bir vektörden N boyuta bir doğrusal dönüşüm ise, o zaman;

<span class="mw-page-title-main">Matris (matematik)</span>

Matematikte matris veya dizey, dikdörtgen bir sayılar tablosu veya daha genel bir açıklamayla, toplanabilir veya çarpılabilir soyut miktarlar tablosudur. Dizeyler daha çok doğrusal denklemleri tanımlamak, doğrusal dönüşümlerde çarpanların takibi ve iki parametreye bağlı verilerin kaydedilmesi amacıyla kullanılırlar. Dizeylerin toplanabilir, çıkartılabilir, çarpılabilir, bölünebilir ve ayrıştırılabilir olmaları, doğrusal cebir ve dizey kuramının temel kavramı olmalarını sağlamıştır.

<span class="mw-page-title-main">İndüktans</span>

İndüktans elektromanyetizma ve elektronikte bir indüktörün manyetik alan içerisinde enerji depolama kapasitesidir. İndüktörler, bir devrede akımın değişimiyle orantılı olarak karşı voltaj üretirler. Bu özelliğe, onu karşılıklı indüktanstan ayırmak için, aynı zamanda öz indüksiyon da denir. Karşılıklı indüktans, bir devredeki indüklenen voltajın başka bir devredeki akımın zamana göre değişiminin etkisiyle oluşur.

<span class="mw-page-title-main">Kalkülüs</span>

Başlangıçta sonsuz küçük hesap veya "sonsuz küçüklerin hesabı" olarak adlandırılan kalkülüs, geometrinin şekillerle çalışması ve cebirin aritmetik işlemlerin genellemelerinin incelenmesi gibi, kalkülüs sürekli değişimin matematiksel çalışmasıdır.

<span class="mw-page-title-main">Doğrusal denklem</span>

Doğrusal ya da lineer denklem terimlerinin her biri ya birinci dereceden değişken ya da bir sabit olan denklemlerdir. Böyle denklemlere "doğrusal" denmesinin nedeni içerdikleri terim ve değişkenlerin sayısına bağlı olarak (n) düzlemde ya da uzayda bir doğru belirtmesindendir. Doğrusal denklemlerin en yaygını bir ve değişkeni içeren aşağıdaki formdur:

En küçük kareler yöntemi, birbirine bağlı olarak değişen iki fiziksel büyüklük arasındaki matematiksel bağlantıyı, mümkün olduğunca gerçeğe uygun bir denklem olarak yazmak için kullanılan, standart bir regresyon yöntemidir. Bir başka deyişle bu yöntem, ölçüm sonucu elde edilmiş veri noktalarına "mümkün olduğu kadar yakın" geçecek bir fonksiyon eğrisi bulmaya yarar. Gauss-Markov Teoremi'ne göre en küçük kareler yöntemi, regresyon için optimal yöntemdir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Sayısal analiz</span>

Sayısal analiz, diğer adıyla nümerik analiz veya sayısal çözümleme, matematiksel analiz problemlerinin yaklaşık çözümlerinde kullanılan algoritmaları inceler. Bu nedenle birçok mühendislik dalı ve doğa bilimlerinde önem arz eden sayısal analiz, bilimsel hesaplama bilimi olarak da kabul edilebilir. Bilgisayarın işlem kapasitesinin artması ile gündelik hayatta ortaya çıkan birçok sistemin matematiksel modellenmesi mümkün olmuş ve sayısal analiz algoritmaları burada ön plana çıkmıştır. 21. yüzyıldan itibaren bilimsel hesaplama yöntemleri mühendislik ve doğa bilimleri ile sınırlı kalmamış ve sosyal bilimler ile işletme gibi alanları da etkilemiştir. Sayısal analizin alt başlıklarına adi diferansiyel denklemlerin yaklaşık çözümleri ve özellikle veri biliminde önem taşıyan sayısal lineer cebir ile optimizasyon örnek gösterilebilir.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

Matematikte, birkaç fonksiyon ya da fonksiyon gruplarının kendi isimleri yeterli öneme layıktır. Bu makaleler fonksiyonları açıklamak için olan daha ayrıntılı olarak gösteren bir listedir. İstatistik dışı ve matematiksel fizik gelişmeleri sonucu özel fonksiyonlar büyük bir teori olmuştur. Modern bir, soyut incelik fonksiyon uzayıları geniş karşılaştırma görünümü, sonsuz-boyutlu ve 'isimsiz' fonksiyonlar içindeki ve simetri ya da ilişki harmonik analiz ve grup temsilileri gibi özellikler ile özel fonksiyonlar ile seçilmiştir.

Matematiksel model, bir sistemin matematiksel kavramlar ve dil kullanılarak tanımlanmasıdır. Matematiksel model geliştirme süreci, matematiksel modelleme olarak adlandırılır. Matematiksel modeller, doğa bilimlerinde ve mühendislik disiplinlerinde bunun yanı sıra sosyal bilimlerde kullanılır. Matematiksel modelleri daha çok fizikçiler, mühendisler, istatistikçiler, operasyon araştırma analistleri ve ekonomistler kullanır. Model, bir sistemi açıklamaya, farklı bileşenlerin etkilerini incelemeye ve bir davranış hakkında öngörüde bulunmak için yardımcı olabilir.

<span class="mw-page-title-main">Afin dönüşümü</span> koordinat dönüşümü

Geometride, afin dönüşüm veya ilgin dönüşüm, afin uzaylar arasında noktaları, düz çizgileri ve düzlemleri koruyan bir eşlemedir. Ayrıca, paralel çizgi kümeleri bir afin dönüşüm sonrası paralel kalır. Bir afin dönüşümde aynı doğru üzerinde duran noktalar arasındaki mesafe oranları korunmasına rağmen, çizgiler arasındaki açılar ve noktalar arasındaki mesafeler korunmayabilir.

Matematikte doğrusal fonksiyon, her ne kadar bu terimle ile ifade edilse bile aslında şu iki farklı terimle ilgilidir:

<span class="mw-page-title-main">Süperpozisyon prensibi (fizik)</span> Bir parçacık veya sistemin belli bir zamanda birden fazla durumda olabilmesi.

Fizikte ve sistem teorisinde, süperpozisyon prensibi, tüm lineer sistemler için bir veya daha fazla uyarılar tarafından oluşan net tepki olarak belirtilen süper pozisyon özelliği olarak da bilinir. Kuantum mekaniğinde iki dolanık parçanın durumuna da süperpoziyon denilir. Bu uyarılar her bir uyarıcı tarafından tek tek meydana gelen uyarıların toplamıdır. Eğer giriş A, X tepkisini üretirse ve giriş B, Y tepkisini üretirse, sonuç olarak giriş (A+B), (X+Y) tepkisini üretir. Homojenlik ve eklenebilirlik özellikleri birlikte süperpozisyon prensibi olarak adlandırılır. Bir lineer fonksiyon süperpozisyon prensibini sağlayanlardan biridir ve şöyle tanımlanır:

 Eklenebilirlik
  Homojenlik
skaler a için.
<span class="mw-page-title-main">Lineer interpolasyon</span> eğri uydurma metodu

Lineer interpolasyon, lineer polinomlar kullanarak, verilerin bilindiği noktalardan yeni verilerin üretilmesini sağlayan bir eğri uydurma metodudur.

<span class="mw-page-title-main">Matematikte simetri</span> matematikte simetri kavramı

Simetri yalnızca geometride değil, matematiğin diğer dallarında da ortaya çıkar. Simetri bir tür değişmezliktir: matematiksel bir nesnenin bir dizi işlem veya dönüşüm altında değişmeden kaldığı özelliktir.