İçeriğe atla

Doğrusal ve zamanla değişmeyen sistemler

Doğrusal ve zamanla değişmeyen (DZD) sistemler, tüm sistemler ailesinin en önemli alt kümesini oluşturmaktadır. Bunun nedeni sahip oldukları iki özelliğin (1-Doğrusallık ve 2-Zamanla Değişmemek) sinyal işleme alanında kullanılan en temel matematiksel operatörlerin (Fourier dönüşümleri, Konvolüsyon Operatörü, Sabit Katsayılı Doğrusal Diferensiyel Denklemler) doğası ile tam bir uyum sergilemesi ve böylece karmaşık problemlerin başarılı matematiksel çözümlerinin elde edilmesine olanak sağlamasıdır.[1]

Bir sistemin DZD olabilmesi için şu iki özelliği taşıması gerekli ve yeterli koşuldur:

1- Doğrusallık:

Giriş-Çıkış ilişkisi , şeklinde ifade edilen sürekli zamanlı bir sisteme uygulanan iki giriş sinyali ve ve bu sinyallere karşılık alınan çıkış tepkileri de ve olsun. Bu sisteme uygulanacak üçüncü bir girişi de şeklinde (lineer kombinasyon) tanımlarsak, doğrusal bir sistemin çıkışının aşağıdakini sağlaması gerekir: (Süperpozisyon özelliği)

Burada a ve b sabit katsayıları karmaşık sayılar kümesine dahildir.

2- Zamanla Değişmeme:

Benzer şekilde, Giriş-Çıkış ilişkisi , şeklinde ifade edilen sürekli zamanlı bir sisteme uygulanan bir giriş ve karşılık gelen çıkış olsun. İkinci bir girişi şu şekilde tanımlarsak: , bu sistemin zamanla değişmeyen özelliği gösterebilmesi için ikinci sinyal için çıkışının aşağıdaki özelliği sağlaması gerekir:

Benzeri bir tanım ayrık zamanlı DZD sistemleri için de yapılabilir ve şu şekilde özetlenebilir:

Ayrık zamanlı bir sistemin DZD olabilmesi için aşağıdaki iki özelliği sağlaması gerekli ve yeterli koşuldur:

1-

2-

Aşağıdaki örnek(ler) verilen bir sistemin DZD olup olmadığını, matematiksel olarak, nasıl bulabileceğimizi gösterir:

Örnek 1

Giriş çıkış özelliği olan sürekli zamanlı bir sistem DZD midir ?

Doğrusallık Testi

ve girişler için çıkışlar ve olsun, için çıkışolduğundan, doğrusal değildir.

Zamanla Değişmeme Testi

girişi için çıkış ikinci bir girişi şeklinde tanımlarsak, ilgili çıkış: olduğu için sistem zamanla değişmeyen özelliği gösterir.

Dolayısı ile doğrusallık koşulunu sağlamayan bu sistem DZD değildir. Böylesi bir sistem için doğrusal olmayan-zamanla değişmeyen tanımı yapılabilir.

Örnek 2

Giriş çıkış özelliği olan ayrık zamanlı bir sistem DZD midir ?

Doğrusallık Testi

ve girişler için çıkışlar ve olsun, için çıkışolduğundan, doğrusaldır.

Zamanla Değişmeme Testi

girişi için çıkış olsun, ikinci bir girişi şeklinde tanımlarsak, ilgili çıkış: olduğu için sistem zamanla değişmektedir.

Dolayısı ile doğrusallık koşuluğunu sağladığı halde zamanla değişmeme koşulunu sağlamayan bu sistem DZD değildir.

Kaynakça

  1. ^ "Arşivlenmiş kopya". 27 Ağustos 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 1 Temmuz 2016. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

Aşağıdaki liste rasyonel fonksiyonların integrallerini vermektedir

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

Regresyon analizi, iki ya da daha çok nicel değişken arasındaki ilişkiyi ölçmek için kullanılan analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa buna tek değişkenli regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon analizi olarak isimlendirilir. Regresyon analizi ile değişkenler arasındaki ilişkinin varlığı, eğer ilişki var ise bunun gücü hakkında bilgi edinilebilir. Regresyon terimi için öz Türkçe olarak bağlanım sözcüğü kullanılması teklif edilmiş ise de Türk ekonometriciler arasında bu kullanım yaygın değildir.

Korelasyon, olasılık kuramı ve istatistikte iki rassal değişken arasındaki doğrusal ilişkinin yönünü ve gücünü belirtir. Genel istatistiksel kullanımda korelasyon, bağımsızlık durumundan ne kadar uzaklaşıldığını gösterir.

<span class="mw-page-title-main">İndüktans</span>

İndüktans elektromanyetizma ve elektronikte bir indüktörün manyetik alan içerisinde enerji depolama kapasitesidir. İndüktörler, bir devrede akımın değişimiyle orantılı olarak karşı voltaj üretirler. Bu özelliğe, onu karşılıklı indüktanstan ayırmak için, aynı zamanda öz indüksiyon da denir. Karşılıklı indüktans, bir devredeki indüklenen voltajın başka bir devredeki akımın zamana göre değişiminin etkisiyle oluşur.

<span class="mw-page-title-main">Doğrusal denklem</span>

Doğrusal ya da lineer denklem terimlerinin her biri ya birinci dereceden değişken ya da bir sabit olan denklemlerdir. Böyle denklemlere "doğrusal" denmesinin nedeni içerdikleri terim ve değişkenlerin sayısına bağlı olarak (n) düzlemde ya da uzayda bir doğru belirtmesindendir. Doğrusal denklemlerin en yaygını bir ve değişkeni içeren aşağıdaki formdur:

Aşağıdaki liste üstel fonksiyonların integrallerini içermektedir. İntegral fonksiyonlarının tüm bir listesi için lütfen İntegral tablosu sayfasına bakınız.

where

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

Gauss integrali, Euler–Poisson integrali olarak da bilinir, tüm reel sayılardaki ex2 Gauss fonksiyonunun integralidir. Alman matematik ve fizikçi Carl Friedrich Gauss'dan sonra adlandırlıdı. İntegrali şöyledir:

Matematikte ıraksak seri yakınsak olmayan bir sonsuz seridir. Bu, serinin kısmi toplamlarının herhangi bir limit değeri olmadığı anlamına gelmektedir.

<span class="mw-page-title-main">Hilbert uzayı</span>

Matematikte Hilbert uzayı, sonlu boyutlu Öklit uzayında uygulanabilen lineer cebir yöntemlerinin genelleştirilebildiği ve sonsuz boyutlu da olabilen bir vektör uzayıdır. Daha kesin olarak, bir Hilbert uzayı, uzayın tam metrik uzay olmasını sağlayan bir uzaklık fonksiyonu üreten bir iç çarpımla donatılmış bir vektör uzayıdır. Bir Hilbert uzayı, bir Banach uzayının özel bir durumudur. Matematik, fizik ve mühendislikte sıkça kullanılmaktadır. Kuantum mekaniğiyle uyumludur. Adını David Hilbert'ten almaktadır.

<span class="mw-page-title-main">Öklid uzayı</span> Öklid geometrisinin yüksek boyutlu vektör uzaylarına genelleştirilmesi

Matematikte Öklid uzayı, Öklid geometrisinin üç boyutlu uzayıdır ve bu kavramlar, çok boyutlu olarak genelleştirilir. “Öklid” terimi bu uzayları, Öklid geometrisi olmayan eğimli uzaydan ve Einstein'nın genel görelilik kuramından ayırt eder. Bu adı Yunan matematikçi Öklid'den dolayı almıştır.

<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:

Herhangi bir değere eşitlenmemiş ya da bir değerle sınırlandırılmamış matematiksel tümcelere ifade denir. İfadeler sabitler, değişkenler, işlemler, fonksiyonlar ve diğer matematiksel sembollerden oluşabilir. En basit ifade biçimlerinden biri şöyle yazılabilir:

Doğrusal filtreler, işleme sokulan verilerin doğrusal değişkenler ile işlendiği sinyal işleme yapılarıdır. Bir başka deyişle, elde edilen sinyal çıktısı, girdinin doğrusal katsayılar ile işleme sokulması ile oluşturulur. Bu özellikte filtreler ile oluşturulan sistemler, dolayısıyla doğrusal sinyal tepkisi yaratırlar.

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Doğrusallık, grafiksel olarak düz bir çizgi olarak gösterilebilen matematiksel bir ilişkinin (fonksiyonun) özelliğidir. Doğrusallık, orantılılık kavramı ile yakından ilişkilidir. Fizikteki örnekler, bir elektrik iletkenindeki voltaj ve akımın doğrusal ilişkisini ve kütle ve ağırlık ilişkisini içermektedir. Daha karmaşık ilişkiler doğrusal olarak sayılmamaktadır.