İçeriğe atla

Doğrusal olmayan rezonans

Fizikte doğrusal olmayan rezonans doğrusal olmayan bir sistemde rezonansın meydana gelmesidir. Bu rezonansta sistem davranışı- rezonans frekans ve modları- salınımın genliğine bağlıdır, fakat doğrusal sistemlerde bu genlikten bağımsızdır.

Tanım

Genel olarak iki tip rezonans ayırt edilmelidir- doğrusal ve doğrusal olmayan. Fiziksel bir açıdan bu formlar dış kuvvetin, sistemin kendi frekansına denk gelip gelmediği ile tanımlanır (sırası ile doğrusal ve doğrusal olmayan rezonans için). Doğrusal olmayan rezonansta frekans durumu şöyledir;

Muhtemel değişik ile ki bunlar doğrusal olmayan bir kısmi diferansiyel denklemin lineer kısmının kendi frekanslarıdır. Burada Fourier harmonik-veya kendi modları- tam sayı indeksleri i olan bir vektördür. Buna bağlı olarak, frekansın rezonans durumu Diophantine denkleminin birçok bilinmeyenli haline denktir. Çözümlerini bulma problemi ise algoritmik olarak çözülemeyeceği kanıtlanmış Hilbert'in onuncu problemine denktir.

Doğrusal olmayan rezonans teorisinin temel fikri:[1]

1. Birçok fiziksel uygulamada ortaya çıkan dağılım fonksiyonlarının özel formunun kullanımı frekans rezonans durumunda çözümleri bulmaya yardım eder. 2. Verilen dağılım fonksiyonunun rezonans kümesi ve rezonans durumlarının formu kesişmeyen rezonans bölüklerine ayrılır; her bölüğün dinamiği bağımsız olarak incelenir (uygun zaman ölçüsünde) 3. Her rezonans bölüğü kendi NR-diyagramı ile temsil edilir. Bu gösterim bölüğün zamana bağlı davranışını tanımlayan dinamik sistemi ve en basit bölükler için hareketin Manley-Rowe sabitlerinin genellemesi olan polinom korunum yasaları kümesini yeniden yapılandırmayı sağlar. 4. Belli tipteki bölükleri tanımlayan dinamik sistemler analitik olarak çözülebilir. 5. Bu teorik sonuçlar direkt olarak gerçek hayattaki fiziksel olguları (örneğin, Dünya yüzeyindeki mevsimsel salınımlar) veya dalga türbülansı teorisindeki birçok dalga türbülansı sistemini tanımlamak için kullanılabilir.

Doğrusal olmayan rezonans kayması

Doğrusal olmayan etkiler harmonik osilatörlerin rezonans eğrilerini önemli ölçüde değiştirebilir. Öncelikle, rezonans frekansı kendi doğal değerinden aşağıdaki formüle göre kayar:

burada salınımın genliği ve harmonik olmayan katsayılarla tanımlanan bir sabittir. İkinci olarak, rezonans eğrisinin şekli bozulur (foldover etkisi). Dış kuvvetin(sinüsoidal) genliği kritik bir değere ulaştığında kararsızlıklar ortaya çıkar. Bu kritik değer aşağıdaki formülle verilmiştir:

Burada osilatörün kütlesi, zayıflatma(amortisman) katsayısıdır. Bununla birlikte, ya yakın frekanstaki salınımların, dan farklı frekansa sahip bir dış kuvvet tarafından uyarılması ile yeni rezonanslar ortaya çıkar.

Dipnotlar

  1. ^ Kartashova, E. (2010), Nonlinear Resonance Analysis, Cambridge University Press, ISBN 9780521763608 

Kaynakça

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kinetik enerji</span> bir cismin harekiyle oluşan enerji

Kinetik enerji, fiziksel bir cismin hareketinden dolayı sahip olduğu enerjidir.

<span class="mw-page-title-main">Genlik modülasyonu</span>

Genlik modülasyonu İletişim teknolojisinde (yayıncılıkta) kullanılan bir modülasyon türüdür. Uluslararası literatürde AM kısaltmasıyla gösterilir. Dilimizde ise, zaman zaman GM kısaltması kullanılmaktadır. Bu modülasyon türü 1906 yılında ilk defa Kanadalı mühendis Reginald Fessenden tarafından (1866-1932) geliştirilmiştir.

<span class="mw-page-title-main">Sinüs dalgası</span>

Sinüzoid dalga, matematikte, yalnız süreçlerde, dalgalı akım kuvvet mühendisliğinde ve diğer alanlarda sıklıkla bir fonksiyon olarak yer alır.

<span class="mw-page-title-main">Titreşim</span>

Titreşim bir denge noktası etrafındaki mekanik salınımdır. Bu salınımlar bir sarkaçın hareketi gibi periyodik olabileceği gibi çakıllı bir yolda tekerleğin hareketi gibi rastgele de olabilir.

Salınım, merkezi bir değere ilişkin veya iki veya daha fazla farklı durum arasındaki bazı ölçümlerin genellikle zamanla tekrarlayan veya periyodik değişimidir. Sarkaç ve alternatif akım bilinen salınım örnekleridir. Salınımlar fizikte atomlar arasındakiler gibi karmaşık etkileşimlere yaklaşmak için kullanılabilir.

Genlik, periyodik harekette maksimum düzey olarak tanımlanabilir. Genlik, bir dalganın tepesinden çukuruna kadar olan düşey uzaklığın yarısıdır. Genlik kavramı ışık, elektrik, radyo dalgaları gibi konuları da kapsayan fen bilimleri alanında kullanılır.

Karesel genlik modülasyonu iletişim teknolojisinde aynı zamanda iki farklı bilgiyi iletmek amacıyla kullanılan bir modülasyon türüdür..

<span class="mw-page-title-main">Ara frekans</span>

Ara frekans telekomünikasyonda verici ve alıcı cihazlarında kullanılan bir sinyaldir. Bu sinyalin kullanıldığı cihazlar teknolojide süperheterodin (superheterodyne) olarak tanımlanırlar.

Mikser Elektronikte, özellikle yayıncılıkta kullanılan ve sinyal frekansını değiştiren bir devredir.

Periyodik fonksiyon, matematikte belli zaman aralığıyla kendini tekrar eden olguları ifade eden fonksiyonlara verilen isimdir. Tekrar etme süresi "periyot" olarak bilinir. Trigonometrik fonksiyonlar en tipik periyodik fonksiyonlardır. Bununla birlikte, diğer periyodik fonksiyonlar da trigonometrik fonksiyonların toplamı olarak ifade edilebilirler.

<span class="mw-page-title-main">Basit harmonik hareket</span>

Basit harmonik hareket, geri çağırıcı kuvvet ile doğru orantılı olarak yer değiştiren periyodik bir hareket türüdür.

Elektromanyetik dalga denklemi, elektromanyetik dalgaların bir ortam boyunca ya da bir vakum ortamı içerisinde yayılmasını açıklayan, ikinci dereceden bir kısmi diferansiyel denklemdir. Denklemin, ya elektrik alanı E ya da manyetik alan B cinsinden yazılan homojen formu şöyledir:

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

Matematiksel fizikte, hareket denklemi, fiziksel sistemin davranışını, sistem hareketinin zamanı ve fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemi, matematiksel fonksiyonların kümesini "devinimsel değişkenler" cinsinden izah eder. Normal olarak konumlar, koordinat ve zaman kullanılır ama diğer değişkenler de kullanılabilir: momentum bileşenleri ve zaman gibi. En genel seçim genelleştirilmiş koordinatlardır ve bu koordinatlar fiziksel sistemin karakteristiğinin herhangi bir uygun değişkeni olabilirler. Klasik mekanikte fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte öklid uzayı, eğilmiş uzay ile tanımlanmıştır. Eğer sistemin dinamiği biliniyor ise denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

<span class="mw-page-title-main">Sürekli ortamlar mekaniği</span>

Sürekli ortamlar mekaniği, ayrı parçacıklar yerine tam bir kütle olarak modellenen maddelerin mekanik davranışları ve kinematiğin analizi ile ilgilenen mekaniğin bir dalıdır. Fransız matematikçi Augustin-Louis Cauchy, 19. yüzyılda bu modelleri formüle dökmüştür, fakat bu alandaki araştırmalar günümüzde devam etmektedir. 

<span class="mw-page-title-main">Sabit bir eksen etrafında dönme</span> dönme hareketinin özel bir durumu

Sabit bir eksen etrafında dönme dönme hareketinin özel bir durumudur. Sabit eksen hipotez yönünü değiştirerek bir eksen olasılığını dışlar ve salınım devinim gibi olguları tarif edemez. Euler’in dönme teoremine göre, Aynı zamanda, sabit eksenler boyunca eş zamanlı rotasyon imkânsızdır. Eğer iki rotasyona aynı anda kuvvet uygulanırsa, rotasyonun yeni ekseni oluşur.

Distorsiyonmetre elektronikte harmonik distorsiyon oranını ölçmek için kullanılan bir ölçü aletidir.

<span class="mw-page-title-main">Doğrusal olmayan optik</span>

Doğrusal olmayan optik ya da nonlineer optik, ışığın doğrusal olmayan sistem ve malzemelerdeki davranışı ile özelliklerini inceleyen optiğin bir alt dalıdır. Bu malzemelerde elektrik alan () ile polarizasyon yoğunluğu () arasındaki ilişki doğrusal değildir; bu durum daha çok yüksek genlikte (108 V/m seviyelerinde) ışık veren lazerlerde ve lityum niobat gibi kristal yapılarında görülür. Schwinger sınırından daha kuvvetli alanlarda vakum da doğrusallığını kaybeder. Süperpozisyon prensibi bu malzemeler için geçerli değildir.

<span class="mw-page-title-main">Duran dalga</span>

Fizikte duran dalgalar, zamana göre salınım yapmasına rağmen belli bir bölgede sabit duran dalgalardır. Bu dalgaların uzayda herhangi bir noktadaki maksimum genliği zamana göre sabittir ve salınımları eş fazdadır. Bir duran dalgada genliğin minimum kaldığı noktalar düğüm (node), maksimum olduğu noktalar ise anti-düğüm (anti-node) olarak bilinir.

<span class="mw-page-title-main">Kramers-Kronig ilişkileri</span>

Karmaşık analiz ve fizikte Kramers-Kronig ilişkileri, üst yarı düzlemde analitik olan herhangi bir karmaşık fonksiyonun reel ve sanal kısımlarını iki yönlü bir şekilde ilişkilendirir. Bu ilişkiler genellikle doğrusal fiziksel sistemlerin tepki fonksiyonlarının reel kısmı aracılığıyla sanal kısmının elde edilmesinde kullanılır; aynı şekilde sanal kısım aracılığı ile reel kısım da bu şekilde elde edilebilir. Bu ilişkiler, stabil fiziksel sistemlerdeki nedenselliği belirtir. Bu ilişkiler ismini fizikçiler Hendrik Anthony Kramers ile Ralph Kronig'den almaktadır.