İçeriğe atla

Doğrusal olmayan regresyon

Ayrıntılar için İngilizce Michaelis-Menten kinetics sayfasına bakabilirsiniz.

Doğrusal olmayan regresyon, istatistik bilimde gözlemi yapılan verilerin bir veya birden fazla bağımsız değişkenin model parametrelerinin doğrusal olmayan bileşiği olan ve bir veya daha çok sayıda bağımsız değişken ihtiva eden bir fonksiyonla modelleştirilmesini içeren bir regresyon (bağlanım) analizi türüdür. Veriler arka-arkaya yapılan yaklaşımlarla kurulan modele uydurularak çözümleme yapılır.

Genel açıklama

Veriler hiç hatadan arınmış bağımsız değişkenler olan açıklayıcı değişken, x ve bunlara bileşik olan gözümlenen bağımlı değişken açıklanan değişken, y değişkeninden oluşur. Her y ortalama'sı verilmiş bir doğrusal-olmayan fonksiyon f(x,β) olan bir rassal değişken olarak modelleştirilmiştir. Sistematik hata bulunabilir ama bunların ele alınması regresyon analizi içeriğinde bulunmaz. Eğer bağımsız değişkenler hatadan arınmamışlarsa, bu daha karmaşık olan değişkenlerde-hata modeli kullanılması gerektirecektir ve burada ele alınan yöntem daha basit olup bu fazladan karmaşıklığı ele almamaktadır.

Örneğin, enzim kinetik analizleri için Michaelis–Menten şöyle ifade edilir:

Bu ifade şöyle de yazılabilir:

Bu ifadede , parametresi; , parametresi ve [S] bağımsız değişken olan x dir. Bu fonksiyon doğrusal olamayan bir fonksiyondur, çünkü lerin bir doğrusal bileşimi ile ifade edilemezler.

Doğrusal olmayan fonksiyonlara diğer örneğinler Üstel fonsksiyonlar, logaritmik fonksiyonlar, trigonometrik fonksiyonlar, üstel ifadeler ihtiva eden [[eksponanasyon fonksiyonları, Gauss-tipi fonksiyon ve Lozernz-tipi fonksiyonlardır. Üstel fonksiyonlar veya logaritmik fonksiyonlar gibi bazı fonksiyonlar dönüşüm kullanılarak doğrusal fonskiyon olarak ifade edilebilirler. Böyle bir dönüşümden sonra standart doğrusal regresyon analizi tatbik edilebilir ama bunun uygulanmasında çok dikkatli bulunmak gerekmektedir.

Genel olarak, doğrusal regresyon'da olduğu gibi en-uygun-olarak yerleştirilme ile tahmin edilmiş parametreler için kapalı-şekilli ifadeler bulunmaz. Çok kere sayısal matematik optimazisyon algoritmalarını kullanarak, optimize edilecek fonksiyon için çoklu yerel maksimum/minimum bulunabilir ve göbal optimiüm bulunsa bile yanlı kestirimler ortaya çıkarabilir. Uygulamada bir kareler toplamının global minimum ifadesini bulmaya çalışma sırasında, optimazisyon algorimi ile birlikte parametrelerin kestirim tahminleri kullanılır.

Regresyon istatistikleri

Bu yordamın altında yatan varsayım, modelin şu şekilde bir doğrusal fonksiyonla yaklaşımı yapılabilme imkânı olduğudur

o

Burada

.

Bundan çıkartılan sonuç, en küçük kareler kestrimleri şu formülle verilir:

Doğrusal olmayan istatistiklerin hesaplanması da doğrusal regresyon gibi kestirimi yapılır ama formüllerde X yerine J kullanılması gerekir. Doğrusal yaklaşım kullanmak çıkartılan sonucu yanlı olmasına sonuç verir. Bunun için doğrusal olamayan regresyon modelinin kullanılması ile ortaya çıkartılan sonuçların alışılagelenden daha şüpheci bir şekilde kullanılması gerekir.

Alelade ve ağırlıklı en küçük kareler

"En iyi uyan" eğri çok kere artıkların karelerinin toplamını minimize edenidir. Buna (alelade) en küçük kareler yaklaşımı adı verilir. Fakat, eğer bağımlı değişkenin sabit varyansı bulunmuyorsa, ağırlıklı karesi alınmış artıklar kullanılabilir (bakınız ağırlıklı en küçük kareler). İdeal olarak kullanılan her bir ağırlık, bir üstü gözlemi yapılan değerin varyasyonu olması tercih edilmelidir. Ama tekrarlanan hesaplı ağırlıklı en küçük kareler algorıtması kullanılıp her bir hesaplama için ağırlıklar tekrar hesaplanıp değiştirilebilir.

Doğrusallaştırma

Dönüştürme

Bazı doğrusal olmayan regresyon problemleri modelin uygun olan dönüştürmesiyle bir doğrusal çerçeveye geçirtilebilir.

Örneğin, (hataları ele almadan) şu doğrusal olmayan regresyon modelini ele alalım:

Eşitliğin her iki tarafının logaritmaları alınırsa, model şu yeni şekle dönüşür:

Bu şekildeki model bilinmeyen katsayılarının kestirimi için bağımlı değişkeni ln(y) ve bağımlı değişkeni x olan bir doğrusal regresyon modelidir ve tekrarlanan optimizasyon yöntemi kullanılması istemeden; doğru doğruya en alelade en küçük kareler regreson yöntemi ile yapılabilir. Fakat doğrusal dönüşüm kullanılmasının çok dikkatle yapılması gerekir. Dönüşümlü modeller için kullanılan vei değerleri başkadır; hatalar bünyesi ve kestirimler üzerinde çıkarımsal sonuçlar da değişik olduğu iyi bilmesi gerekir. Bunlar istenilmeyen sonuçların elde edilmesine yol açabilir. Diğer taraftan, hataların en yüksek kaynağının ne olduğuna bağlı olarak, bir doğrusal dönüşüm hataların normal dağılım göstermesine sonuç olabilir. Bu nedenle bir doğrusal dönüşüm kullanmayı seçmek için modelin karakterlerini iyi bilme gerekir.

Michaelis–Menten kinetik analizi için, 1/v ile 1/[S] eksenleri olan bir doğrusal "Lineweaver-Burk" gösterimi, yani

çok defa kullanılmaktadır. Fakat bu veri hatalarına karşı çok hassaslık gösterir ve [S] bağımsız değişkenin belirli bir açıklığı içinde verileri kullanıp model kurma yanlılığına yol açtığı bilinmektedir. Bu nedenle bu dönüşümün pratikte kullanılması tavsiye edilmemekte ve başka yaklaşımlara kullanılması salık verilmektedir..

Bölümleme

Hardal bitkisinin randımanı ve toprak tuzluluğu
Ana madde: Bölümlenmiş regresyon

"Bağımsız değişken" veya "açıklayıcı değişken (diyelim X) bölümlere veya parçalara veya sınıflara bölünebilir ve her bir bölüm için doğrusal regresoyon ayrı ayrı uygulanabilir. Kestirim aralığı ile birlikte uygulanan bölümler için regresyon, her bir bölüm için bağımlı değişken veya açıklanan değişken (diyelim Y) için değişik davranış gösterdiğini ortaya çıkaran bir sonuç elde edilebilir.[1]

Yandaki gösterimde X = "toprak tuzluğu" kolza yetiştirilmesinde "ürün randımanına" (Y) ilk önce hiç etki yapmamaktadır. Fakat (kırılma noktası adı verilebilecek) belirli bir kritik veya eşik değer geçilince randıman menfi olarak etkilenmektedir.[2]

Bu gösterim SegReg adlı bir kompüter programı kullanılarak hazırlanmıştır. <reg>SegReg kompüter programı hiç parasız [3] 13 Şubat 2010 tarihinde Wayback Machine sitesinde arşivlendi. adlı websitesinde yüklenebilir.

Dipnotlar

  1. ^ R.J.Oosterbaan, 1994, Frequency and Regression Analysis (Sıklık ve Regresyon Analizi) . Kaynak: H.P.Ritzema (ed.), Drainage Principles and Applications, Publ. 16, pp. 175-224, International Institute for Land Reclamation and İmprovement (İLRİ), Wageningen, The Netherlands. ISBN 90 70754 3 39 . PDF : [1] 22 Temmuz 2011 tarihinde Wayback Machine sitesinde arşivlendi.
  2. ^ R.J.Oosterbaan, 2002. Tarımcıların tarlalarında şu çekimi: veri analizi. Uluslararası Toprak Reklamasyonu ve Geliştirilmesi Enstitüsü (İLRİ) Wageningen, Holland. (PDF) : [2] 22 Temmuz 2011 tarihinde Wayback Machine sitesinde arşivlendi.

Ayrıca bakınız

Dış bağlantılar

  • İngilizce Wikiopedia "Nonlienar regression" maddesi:[4] 17 Aralık 2008 tarihinde Wayback Machine sitesinde arşivlendi. (İngilizce) (Erişme:21.5.2010).

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Ekonometri</span>

Ekonometri İki veya daha fazla verinin, birbirleri arasındaki ilişkiyi ve bu ilişkiden yola çıkarak, matematik, istatistik ve bilgisayar bilimi aracılığıyla ekonomik ilişkilerin ampirik bir biçimde değerlendirilerek, bu veriler arasındaki ilişkiyi inceleyen bilim dalıdır. Daha açık olmak gerekirse, "sonucu uygun metodlarla ilişkilendirilmiş, teori ve gözlemin eşzamanlı gelişimi tabanlı mevcut ekonomik olgunun nicel çözümlemesidir." Bir ekonomiye giriş ders kitabı ekonometriyi: "dağlarca verinin arasından basit ilişkileri çıkarmak için titizlikle araştırmak" olarak açıklamıştır. "Ekonometri" terimi ilk olarak Polonyalı ekonomist Pawel Ciompa tarafından 1910 yılında kullanılmıştır. Bugünkü kullanım şekline getiren ise Ragnar Frisch'dir. Günümüzde daha güçlü bilgisayar yazılımların varlığıyla ekonometrik analizlerin gücü artmıştır.

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

Regresyon analizi, iki ya da daha çok nicel değişken arasındaki ilişkiyi ölçmek için kullanılan analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa buna tek değişkenli regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon analizi olarak isimlendirilir. Regresyon analizi ile değişkenler arasındaki ilişkinin varlığı, eğer ilişki var ise bunun gücü hakkında bilgi edinilebilir. Regresyon terimi için öz Türkçe olarak bağlanım sözcüğü kullanılması teklif edilmiş ise de Türk ekonometriciler arasında bu kullanım yaygın değildir.

Korelasyon, olasılık kuramı ve istatistikte iki rassal değişken arasındaki doğrusal ilişkinin yönünü ve gücünü belirtir. Genel istatistiksel kullanımda korelasyon, bağımsızlık durumundan ne kadar uzaklaşıldığını gösterir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

Durbin Watson istatistiği, bir regresyon modeli tahmin edildikten sonra artık terimlerin korelasyon halinde olup olmadığını test etmeye yarayan bir sayıdır. Bu sayının 2 civarında çıkması, "otokorelasyon vardır" boş hipotezini reddedemeyeceğimizi gösterir. Buna göre e = hata terimi ya da artık, t = zaman olmak üzere Durbin Watson test istatistiği:

<span class="mw-page-title-main">Kalkülüs</span>

Başlangıçta sonsuz küçük hesap veya "sonsuz küçüklerin hesabı" olarak adlandırılan kalkülüs, geometrinin şekillerle çalışması ve cebirin aritmetik işlemlerin genellemelerinin incelenmesi gibi, kalkülüs sürekli değişimin matematiksel çalışmasıdır.

En küçük kareler yöntemi, birbirine bağlı olarak değişen iki fiziksel büyüklük arasındaki matematiksel bağlantıyı, mümkün olduğunca gerçeğe uygun bir denklem olarak yazmak için kullanılan, standart bir regresyon yöntemidir. Bir başka deyişle bu yöntem, ölçüm sonucu elde edilmiş veri noktalarına "mümkün olduğu kadar yakın" geçecek bir fonksiyon eğrisi bulmaya yarar. Gauss-Markov Teoremi'ne göre en küçük kareler yöntemi, regresyon için optimal yöntemdir.

<span class="mw-page-title-main">Üstel fonksiyon</span>

Üstel işlev veya üstel fonksiyon, matematikte kullanılan işlevlerden biridir. Genel tanımı ax şeklindedir, burada taban a artı değere sahip bir sabittir ve üst x değişkendir. Çoğunlukla

sembolüyle gösterilir. Kimi kitaplarda ise;
sembolü kullanılır.
<span class="mw-page-title-main">Poisson dağılımı</span>

Poisson dağılımı, olasılık kuramı ve istatistik bilim kollarında bir ayrık olasılık dağılımı olup belli bir sabit zaman birim aralığında meydana gelme sayısının olasılığını ifade eder. Bu zaman aralığında ortalama olay meydana gelme sayısının bilindiği ve herhangi bir olayla onu hemen takip eden olay arasındaki zaman farkının, önceki zaman farklarından bağımsız oluştuğu kabul edilir.

<span class="mw-page-title-main">Beta dağılımı</span>

Olasılık kuramı ve istatistikte, beta dağılımı, [0,1] aralığında iki tane pozitif şekil parametresi ile ifade edilmiş bir sürekli olasılık dağılımları ailesidir. Çok değişkenli genellemesi Dirichlet dağılımıdır.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

<span class="mw-page-title-main">Log-normal dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında log-normal dağılım logaritması normal dağılım gösteren herhangi bir rassal değişken için tek-kuyruklu bir olasılık dağılımdır. Eğer Y normal dağılım gösteren bir rassal değişken ise, bu halde X= exp(Y) için olasılık dağılımı bir log-normal dağılımdır; aynı şekilde eğer X log-normal dağılım gösterirse o halde log(X) normal dağılım gösterir. Logaritma fonksiyonu için bazın ne olduğu önemli değildir: Herhangi iki pozitif sayı olan ab ≠ 1 için eğer loga(X) normal dağılım gösterirse, logb(X) fonksiyonu da normaldir.

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

Tobit modeli negatif olmayan bağımlı bir değişken ile bağımsız bir değişken veya vektör arasındaki ilişkiyi tanımlamak için James Tobin tarafından öne sürülen bir ekonometrik yöntemdir.

F-testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan parameterik çıkarımsal sınama yöntemidir. F-testi sıfır hipotezine göre gerçekte bir F-dağılımı gösteren sınama istatistiği bulunduğu kabul edilen hallerde, herhangi bir istatistiksel sınama yapma şeklidir. Bu çeşit bir istatistiksel sınama önce Ronald Fisher tarafından 1920'li yıllarda tek yönlü varyans analizi için ortaya atılıp kullanılmış ve sonradan diğer şekillerde F-dağılım kullanan sınamalar da ortaya atılınca, bu çeşit sınamalara genel isim olarak F-testi adı verilmesi Ronald Fisher anısına George W. Snecedor tarafından teklif edilip, istatistikçiler tarafından F-testi bir genel isim olarak kabul edilmiştir.

Fizikte, Lorentz dönüşümü adını Hollandalı fizikçi Hendrik Lorentz'den almıştır. Lorentz ve diğerlerinin referans çerçevesinden bağımsız ışık hızının nasıl gözlemleneceğini açıklama ve elektromanyetizma yasalarının simetrisini anlama girişimlerinin sonucudur. Lorentz dönüşümü, özel görelilik ile uyum içerisindedir. Ancak özel görelilikten daha önce ortaya atılmıştır.

<span class="mw-page-title-main">Matematiksel istatistik</span> matematiksel yöntemlerin kullanıldığı olası istatistikler

Matematiksel istatistik, istatistiksel veri toplama tekniklerinin aksine, matematiğin bir dalı olan olasılık teorisinin istatistiğe uygulanmasıdır. Bunun için kullanılan özel matematiksel teknikler arasında matematiksel analiz, doğrusal cebir, stokastik analiz, diferansiyel denklemler ve ölçü teorisi bulunur.