Grup teorisi veya Grup kuramı, simetrileri inceleyen matematik dalıdır. Simetri kuramı olarak da adlandırılabilir. Bir nesnenin simetrileri ile kast edilen, nesneye uygulandığında nesneye hiçbir etki olmamış gibi sonuç veren dönüşümlerdir. Her nesnenin en az bir simetrisi vardır: hiçbir şey yapmadan olduğu gibi bırakma dönüşümü. Bahsettiğimiz dönüşümlerin tersleri de vardır ve aradığımız özellikleri sağlarlar. Son olarak da dönüşümlerin art arda yapılması, birleşimli bir işlemdir. Bu üç koşula sırasıyla birim elemana sahip olma, elemenların tersi olma ve grup işleminin birleşmeli olması denir. Bu kavramların matematikte soyutlanması, üzerinde tersinebilir ve bileşme özelliğine sahip ikili bir işlemin tanımlı olduğu kümeler ile yapılır. Daha detaylı açıklamak gerekirse, grup nesnesi bir küme G ve onun üzerinde tanımlı bir işleminden oluşur. Bu operasyonun aşağıdaki şartları sağlaması gereklidir:
Topolojik uzaylar, matematiğin Topoloji dalının başlıca uğraş konularıdır. Bir X kümesi ve bu kümenin alt kümelerinin bir kısmını içeren ve aşağıdaki varsayımları sağlayan S kümesinden oluşurlar:
Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.
Doğrusal cebir ya da lineer cebir; matematiğin, vektörler (yöney), vektör uzayları, doğrusal dönüşümler, doğrusal denklem takımları ve matrisleri (dizey) inceleyen alanıdır. Vektör uzayları, modern matematiğin merkezinde yer alan bir konudur. Bundan dolayı doğrusal cebir hem soyut cebirde hem de fonksiyonel analizde sıkça kullanılır. Doğrusal cebir, analitik geometri ile de alakalı olup sosyal bilimlerde ve fen bilimlerinde yaygın bir uygulama alanına sahiptir.
Vektör uzayı veya Yöney uzayı, matematikte ölçeklenebilir ve eklenebilir bir nesnelerin (vektörlerin) uzayına verilen isimdir. Daha resmî bir tanımla, bir vektör uzayı, iki elemanı arasında vektör toplamasının ve skaler denilen sayılarla çarpımın tanımlı olduğu ve bunların bazı aksiyomları sağladığı kümedir. Skalerler, rasyonal veya reel sayılar kümesinden gelebilir, ama herhangi bir cisim üzerinden bir vektör uzayı oluşturmak mümkündür. Vektör uzayları, skalerlerin geldiği cisime göre reel vektör uzayı, kompleks vektör uzayı veya genel bir cisim üzerinden K vektör uzayı şeklinde adlandırılır.
Küme, matematikte farklı nesnelerin topluluğu veya yığını olarak tanımlanmaktadır. Bu tanımdaki "nesne" soyut ya da somut bir şeydir. Fakat her ne olursa olsun iyi tanımlanmış olan bir şeyi, bir eşyayı ifade etmektedir. Örneğin, "Tüm canlılar topluluğu", "Dilimiz alfabesindeki harflerin topluluğu", "Masamın üzerindeki tüm kâğıtlar" tümcelerindeki nesnelerin anlaşılabilir, belirgin oldukları, kısaca iyi tanımlı oldukları açıkça ifade edilmektedir. Dolayısıyla bu tümcelerin her biri bir kümeyi tarif etmektedir. O halde, matematikte "İyi tanımlı nesnelerin topluluğuna küme denir." biçiminde bir tanımlama yapılmaktadır.
Poisson dağılımı, olasılık kuramı ve istatistik bilim kollarında bir ayrık olasılık dağılımı olup belli bir sabit zaman birim aralığında meydana gelme sayısının olasılığını ifade eder. Bu zaman aralığında ortalama olay meydana gelme sayısının bilindiği ve herhangi bir olayla onu hemen takip eden olay arasındaki zaman farkının, önceki zaman farklarından bağımsız oluştuğu kabul edilir.
Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.
Matematikte Hilbert uzayı, sonlu boyutlu Öklit uzayında uygulanabilen lineer cebir yöntemlerinin genelleştirilebildiği ve sonsuz boyutlu da olabilen bir vektör uzayıdır. Daha kesin olarak, bir Hilbert uzayı, uzayın tam metrik uzay olmasını sağlayan bir uzaklık fonksiyonu üreten bir iç çarpımla donatılmış bir vektör uzayıdır. Bir Hilbert uzayı, bir Banach uzayının özel bir durumudur. Matematik, fizik ve mühendislikte sıkça kullanılmaktadır. Kuantum mekaniğiyle uyumludur. Adını David Hilbert'ten almaktadır.
Geometride, afin dönüşüm veya ilgin dönüşüm, afin uzaylar arasında noktaları, düz çizgileri ve düzlemleri koruyan bir eşlemedir. Ayrıca, paralel çizgi kümeleri bir afin dönüşüm sonrası paralel kalır. Bir afin dönüşümde aynı doğru üzerinde duran noktalar arasındaki mesafe oranları korunmasına rağmen, çizgiler arasındaki açılar ve noktalar arasındaki mesafeler korunmayabilir.
Matematik'te Lp uzayı, sonlu boyutlu vektör uzayı için p-norm'un doğal bir genelleme kullanarak tanımlı fonksiyon uzayı'dır.Bazen Lebesque uzayı denir.İlk Frigyes Riesz tarafından Bourbaki grubu Bourbaki 1987 olarak tanıtılmasına rağmen,Henri Lebesgue Dunford & Schwartz 1958, III.3, adına ithaf edilmiştir. fonksiyonal analiz'de Banach uzayı'nın ve topolojik vektör uzaylarının önemli bir sınıfını Lp uzayı formu oluşturur.Lebesgue uzayının fizik, istatistik, finans, mühendislik ve diğer disiplinlerde uygulamaları var.
Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.
Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.
Matematikte, özellikle doğrusal cebir ve sayısal analizde, Gram–Schmidt süreci bir dizi vektörleri bir iç çarpım uzayı içinde ortonormal etmek için kullanılan bir yöntemdir. İç çarpım uzayında olan vektörler, genellikle Öklid uzayında Rn donatılmış olan standart iç çarpım vektörlerdir. Gram–Schmidt süreci bir sonlu, doğrusal bağımsız kümeni, S = {v1, ..., vk}, k ≤ n, alıp ve R'in aynı k-boyutlu alt uzayında yayılan ortogonal kümeni, S′ = {u1, ..., uk}, üretmektedir.
Matematiksel analizde, küme üzerindeki bir ölçü, bu kümenin her bir uygun alt kümesine bir sayı atamanın sistematik bir yoludur ve sezgisel olarak kümenin boyutu olarak yorumlanır. Bu anlamda ölçü, uzunluk, alan ve hacim kavramlarının bir genellemesidir. Özellikle önemli bir örnek, Öklid geometrisinin geleneksel uzunluğunu, alanını ve hacmini n-boyutlu Öklid uzayının Rn uygun alt kümelerine atayan bir Öklid uzayındaki Lebesgue ölçüsüdür. Örneğin, gerçek sayılardaki [0, 1] aralığının Lebesgue ölçüsü, kelimenin günlük anlamındaki uzunluğudur ve tam olarak 1'dir.
Lineer cebirde, taban, bir vektör uzayını tanımlamak için yeterli vektör kümesidir. Bir V vektör uzayının alt kümesi B bu uzayın tabanıysa, V'nin tüm elemanları B'nin elemanlarının biricik sonlu doğrusal birleşimleri şeklinde yazılabilir. Bu doğrusal birleşimlerin katsayıları, vektörün B üzerindeki bileşenleri ya da koordinatları olarak adlandırılır. Taban B'nin elemanlarına taban vektörleri denir.
Matematik'te, doğrusal birleşim ya da lineer kombinasyon, bir kümenin her elemanının birer sabitle çarpılarak sonuca eklendiği ifadedir. Örneğin, x ve y'nin doğrusal birleşimi ax + by'dir. Doğrusal birleşim kavramı doğrusal cebir ve benzeri matematik alanlarında sıkça kullanılır.
Elektromanyetizmada ve optikte dağılma ya da dispersiyon, elektromanyetik dalganın ilerlediği ortamdaki faz hızının frekansına bağlı olması durumudur. Kırılma indisinin frekansa bağlılığı olarak da tanımlanabilmektedir. Bu özelliğe sahip ortamlar dağıtıcı ortamlar olarak bilinir. Faz hızı ile grup hızının eşit olması durumunda dağılma sıfırlanır; grup hızının daha büyük olması anormal dağılma olarak bilinir. İletim hatları ve optik fiberler gibi dalga kılavuzlarında dalga yayılımını büyük ölçüde etkileyen dağılma, dalga denkleminin geçerliği olduğu diğer sistemlerde de gözlemlenebilmektedir.
Matematikte Radon-Nikodym teoremi, aynı ölçülebilir uzayda tanımlanmış iki ölçü arasındaki ilişkiyi ifade eden bir sonuçtur. Burada ölçü ile kastedilen ölçülebilir bir uzayın ölçülebilir alt kümelerine tutarlı bir büyüklük atayan bir küme fonksiyonudur. Ölçü örnekleri arasında alan ve hacim verilebilir.