İçeriğe atla

Doğrusal bağımsızlık

uzayında doğrusal olarak bağımsız vektörler.
uzayındaki bir düzlem üzerindeki doğrusal olarak bağımlı vektörler.

Lineer cebirde, bir vektörkümesinin elemanlarının herhangi biri diğerlerinin doğrusal birleşimi olarak yazılabiliyorsa bu küme doğrusal olarak bağımlı tabir edilir; eğer kümedeki vektörlerin hiçbiri bu şekilde yazılamıyorsa, bu küme için doğrusal olarak bağımsız denir. Doğrusal bağımsızlık kavramı, boyut kavramının tanımlanmasında önemli yere sahiptir.[1]

Bir vektör uzayının doğrusal olarak bağımsız taban vektörlerinin sayısına bağlı olarak, bu vektör uzayı sonlu ya da sonsuz boyutlu olarak adlandırılır.

Kaynakça

  1. ^ G. E. Shilov, Linear Algebra 9 Eylül 2017 tarihinde Wayback Machine sitesinde arşivlendi. (Trans. R. A. Silverman), Dover Publications, New York, 1977.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

Doğrusal dönüşüm, bir fonksiyon çeşididir. T, M boyutlu bir vektörden N boyuta bir doğrusal dönüşüm ise, o zaman;

<span class="mw-page-title-main">Lineer cebir</span> Uzay matematiği

Doğrusal cebir ya da lineer cebir; matematiğin, vektörler (yöney), vektör uzayları, doğrusal dönüşümler, doğrusal denklem takımları ve matrisleri (dizey) inceleyen alanıdır. Vektör uzayları, modern matematiğin merkezinde yer alan bir konudur. Bundan dolayı doğrusal cebir hem soyut cebirde hem de fonksiyonel analizde sıkça kullanılır. Doğrusal cebir, analitik geometri ile de alakalı olup sosyal bilimlerde ve fen bilimlerinde yaygın bir uygulama alanına sahiptir.

Lie işlemcisi, matematikte ve fizikte geniş bir kullanım alanı bulur. Bir cismin üzerine bu dönüşüm ile tanımlanan yöney (vektör) uzayı Lie cebri olarak adlandırılır. Adını Sophus Lie'den almıştır.

Gluonlar kuarklar arasındaki güçlü etkileşimi sağlayan temel parçacıklardır. Bu etkileşim fotonların elektromanyetik etkileşmedeki rolüne benzer bir şekilde iki yüklü parçacık arasında momentum değişimini sağladığı düşüncesi ile benzerlik kurularak anlaşılabilir.

Vektör uzayı veya Yöney uzayı, matematikte ölçeklenebilir ve eklenebilir bir nesnelerin (vektörlerin) uzayına verilen isimdir. Daha resmî bir tanımla, bir vektör uzayı, iki elemanı arasında vektör toplamasının ve skaler denilen sayılarla çarpımın tanımlı olduğu ve bunların bazı aksiyomları sağladığı kümedir. Skalerler, rasyonal veya reel sayılar kümesinden gelebilir, ama herhangi bir cisim üzerinden bir vektör uzayı oluşturmak mümkündür. Vektör uzayları, skalerlerin geldiği cisime göre reel vektör uzayı, kompleks vektör uzayı veya genel bir cisim üzerinden K vektör uzayı şeklinde adlandırılır.

<span class="mw-page-title-main">Doğrusal denklem dizgesi</span>

Doğrusal denklem dizgesi, birkaç tane aynı tip değişkenleri içeren birkaç tane doğrusal denklemlerin oluşturduğu topluluktur. Örneğin:

Matematikte, özdeğer, özvektör ve özuzay, doğrusal cebir alanında birbiriyle ilişkili kavramlardır. Doğrusal cebir, vektörler üzerine uygulanan matrisler şeklinde temsil edilen doğrusal dönüşümleri araştırır. Özdeğerler, özvektörler ve özuzaylar, bir matrisin özellikleridir ve matris hakkında önemli bilgiler verir. Matrislerin çarpanlarına ayrılmasında kullanılabilirler. Uygulamalı matematik alanlarında olduğu kadar finans ve kuantum mekaniğinde de kullanılır.

Matematikte fonksiyon uzayı bir X kümesinden bir Y kümesine tanımlı fonksiyonların oluşturduğu kümeye verilen bir addır. Fonksiyonlar kümesi yerine fonksiyon uzayı denilmesinin nedeni matematiğin kendi içindeki uygulamalarında bu kümenin genellikle topolojik uzay veya vektör uzayı olarak ortaya çıkmasıdır.

<span class="mw-page-title-main">Hilbert uzayı</span>

Matematikte Hilbert uzayı, sonlu boyutlu Öklit uzayında uygulanabilen lineer cebir yöntemlerinin genelleştirilebildiği ve sonsuz boyutlu da olabilen bir vektör uzayıdır. Daha kesin olarak, bir Hilbert uzayı, uzayın tam metrik uzay olmasını sağlayan bir uzaklık fonksiyonu üreten bir iç çarpımla donatılmış bir vektör uzayıdır. Bir Hilbert uzayı, bir Banach uzayının özel bir durumudur. Matematik, fizik ve mühendislikte sıkça kullanılmaktadır. Kuantum mekaniğiyle uyumludur. Adını David Hilbert'ten almaktadır.

Çifte doğrusallık, matematik'te, çiftdoğrusal işlemci her bir bağımsız dogrusal değişkenlerin üçüncü bir vektör uzayının bir öğesini elde etmek için iki vektör uzayı öğelerini birleştiren bir fonksiyonudur. Matris çarpimi bir örnektir.

Çokludoğrusal cebirde, bir çoklu doğrusal form

tipinin bir haritasıdır

Matematikte doğrusal fonksiyon, her ne kadar bu terimle ile ifade edilse bile aslında şu iki farklı terimle ilgilidir:

Matematikte çokludoğrusal cebir, doğrusal cebir yöntemlerinin genişletilmişidir. Vektör uzayı kümesinde yalnızca doğrusal cebir olarak ele alınır ve vektör uzayı kuramı geliştirilir. p vektörleri ve çokluvektör kavramlarını inceleyebilmek için çokludoğrusal cebirden faydalanılır.

Doğrusal cebirde ve reel sayılarda, skaler kullanılarak, vektör uzayındaki ilgili vektörler, skaler çarpma işlemi ile başka bir vektöre dönüştürülür. Daha genel bir ifade ile, bir vektör uzayı, karmaşık sayılar gibi reel sayılar yerine, alan kullanılarak tanımlanabilir. Böylece bu vektör uzayının skalerleri ilgili alanın ögeleri olur.

<span class="mw-page-title-main">Gram–Schmidt işlemi</span>

Matematikte, özellikle doğrusal cebir ve sayısal analizde, Gram–Schmidt süreci bir dizi vektörleri bir iç çarpım uzayı içinde ortonormal etmek için kullanılan bir yöntemdir. İç çarpım uzayında olan vektörler, genellikle Öklid uzayında Rn donatılmış olan standart iç çarpım vektörlerdir. Gram–Schmidt süreci bir sonlu, doğrusal bağımsız kümeni, S = {v1, ..., vk}, kn, alıp ve R'in aynı k-boyutlu alt uzayında yayılan ortogonal kümeni, S′ = {u1, ..., uk}, üretmektedir. 

<span class="mw-page-title-main">Doğrusal germe</span> Doğrusal cebirde alt uzay

Doğrusal cebirde, germe verilen bir vektör kümesini kapsayan en küçük doğrusal altuzaydır. 'yi içeren tüm doğrusal altuzayların kesişimi veya 'nin elemanlarının doğrusal kombinasyonlarının kümesi olarak tanımlanabilir. Dolayısıyla, bir vektör kümesinin germesi bir vektör uzayıdır. Germeler matroidlere ve modüllere genelleştirilebilir.

<span class="mw-page-title-main">Taban (lineer cebir)</span> Bir vektör uzayını tanımlamak için yeterli vektör kümesi

Lineer cebirde, taban, bir vektör uzayını tanımlamak için yeterli vektör kümesidir. Bir V vektör uzayının alt kümesi B bu uzayın tabanıysa, V'nin tüm elemanları B'nin elemanlarının biricik sonlu doğrusal birleşimleri şeklinde yazılabilir. Bu doğrusal birleşimlerin katsayıları, vektörün B üzerindeki bileşenleri ya da koordinatları olarak adlandırılır. Taban B'nin elemanlarına taban vektörleri denir.

Matematik'te, doğrusal birleşim ya da lineer kombinasyon, bir kümenin her elemanının birer sabitle çarpılarak sonuca eklendiği ifadedir. Örneğin, x ve y'nin doğrusal birleşimi ax + by'dir. Doğrusal birleşim kavramı doğrusal cebir ve benzeri matematik alanlarında sıkça kullanılır.

Lineer cebirde, kerte ya da rank, bir A matrisinin sütunlarının gerdiği vektör uzayının boyutudur. Bu sayı A'nın doğrusal olarak bağımsız sütunlarının sayısına eşittir. Aynı zamanda matrisin satırlarının gerdiği vektör uzayının boyutuna da eşittir. Dolayısıyla kerte, A ile gösterilen bir doğrusal denklemler sisteminin bozulmamışlığını gösterir. Bir matrisin kertesi en temel özelliklerinden biridir.