İçeriğe atla

Doğal birimler

Fizikte doğal birimler, evrensel fizik sabitleri kullanılarak elde edilen ölçü birimleridir. Örneğin temel yük (e), elektriksel yük ve ışık hızı (c), hız için kullanılan doğal birimlerdir. Herhangi bir evrensel fizik sabitini 1 birim olarak normalleştirmek için yalnızca evrensel ölçü sistemi kullanılır. Her ne kadar bu şekilde basitleştirme avantaj gibi görülüyor olsa bile, fizik yasalarının matematiksel ifadesinden elde edilen bu sabitlerin anlaşılması biraz zor olabilir.

Tanımlama

Doğal birimlerin tanımlarının kökeni yalnızca doğadan geldiğinden dolayı "doğaldır". Bunların büyüklükleri insan tarafından elde edilemez. Planck birimleri, her ne kadar doğal birimler sistemlerinden biri olsa bile, "doğal birimler" olarak adlandırılmasında bir kısıtlama yoktur. Planck birimleri, SI'da anılan SI olmayan birimlerde sınıflandırılan doğal birimlerdir. Fakat, bu birimler herhangi bir prototip nesne veya parçacığın bir özelliği olmaması için eşsiz olarak dikkate alınmışlardır, fakat vakumun bir özelliği olabilirler.

Diğer ölçü sistemleri gibi doğal birimlerde de, uzunluk, kütle, zaman, sıcaklık, (elektrik akımı yerine) elektriksel yük kullanılır. Bazı fizikçiler sıcaklığı temek fiziksel nicelik olarak kabul etmiyor. Bunu serbest bir parçacığın birim derecedeki enerjisi olarak ifade ediyorlar. Çünkü enerji, kütle, uzunluk ve zamana bağlıdır. Hemen hemen tüm doğal birimler Boltzmann sabiti (kB=1) olarak normalleştirilebilir. Bu, örneğin sıcaklık birimini tanımlamanın basit bir yoldur.

SI'da elektriksel yük birimi amper iken SI'dan türetilen birim sisteminde elektriksel yük birimi coulombdur.

Gösterim ve kullanım

Doğal birimler, çoğunlukla 1 birim olarak normalleştirilir. Çoğu doğal birim sistemleri, c = 1 eşitliğini kullanır. Burada c, ışık hızıdır. Işık hızının yarı hızındaki bir v hızı için v = 1/2c ve c = 1 olur. Bu durumda v = 1/2 olur. v = 1/2 eşitliğinin anlamı "v hızı, örneğin Planck birimlerindeki değeri yarımdır" veya "v hızı, yarım Planck birim hızı kadardır".

c = 1, tüm birimlerde kullanılabilir. Örneğin E=mc², Planck birimlerinde E = m olarak yazılabilir. Bu denklemin anlamı; "Bir parçacığın Planck birimlerine göre enerjisi, parçacığın kütlesine eşittir."

Avantajlar ve dezavantajlar

Doğal birimler, SI ve diğer birim sistemleri ile karşılaştırıldıklarında, hem avantajları hem de dezavantajları vardır:

  • Basitleştirilmiş denklemler: Sabitler 1'e normalleştirildiğinde, bu sabitleri bulunduran denklemler de çok sık ortaya çıkar ve bazen de anlaşılmaları basitleşir. Örneğin sabit kütleye sahip bir parçacık için E2 = p2c2 + m2c4 özel görelilik denkleminin çözümü biraz zordur. Fakat denklem doğal birimlere dönüştürülürse, E2 = p2 + m2 biçimini alır.
  • Fiziksel anlamı: Doğal birimler sistemi boyut analizinde ortaya çıkar. Örneğin Planck sabiti kuantum mekaniğinde aksiyomun temel birimi olarak kabul edilir.
  • Prototipleri yoktur: Prototip, kilogram gibi bir birimi tanımlayan fiziksel, somut bir nesnedir. Prototipte herhangi bir zamanda her an bir eksiklik olabilir. Doğal birimlerin prototipinin olmaması bir avantajdır. (Bu avantajı, klasik elektriksel birim gibi doğal olmayan birim sistemlerinde paylaşır.)
  • Büyük belirsizlik: a = 1010 eşitliğini Planck birimlerinde göz önüne alalım. Eğer a, bir uzunluk ifade ederse, denklem a = 1,6×10-25 metre olur (1 Planck uzunluğunun 1,616199(97)×10-35 metre olduğuna dikkat edin). Eğer a, bir kütle ifade ederse, denklem a = 220 kg olur (1 Planck kütlesinin 2,17651(13)×10-8 kg olduğuna dikkat edin. Bu yüzden, eğer a ifadesi tam olarak tanımlanmazsa, a = 1010 denklemi yanlış anlaşılmaya neden olabilir.

Normalleştirilecek sabitleri seçme

Fizik sabitlerinin çok oluşu, doğal birim sistemleri tasarlayıcıları tarafından, bu sabitlerden bazılarının normalleştirilmesi (1'e eşitlenmesi) gerektiği düşüncesini doğurdu. Yalnızca birkaç sabiti normalleştirmek yeterli değildir. Örneğin, protonun ve elektronun kütleleri normalleştirilemez. Eğer bir elektronun kütlesi 1 olarak normalleştirilirse, bir protonun kütlesi de ≈1836 olur. Çok basit bir örnek olarak, α≈1/137 ince yapılı sabiti de 1 olarak normalleştirilemez. Çünkü 1, boyutsuz fiziksel sabittir. Diğer boyutsuz fiziksel sabitler ile ilgili iyi yapılı sabit de şöyledir:

Burada ke, Coulomb sabiti; e temel yük; ℏ, indirgenmiş Planck sabiti ve c, ışık hızıdır. Bu yüzden bu dört sabiti eşzamanlı olarak normalleştirmek mümkün değildir.

Elektromanyetizma birimleri

SI birimlerinde elektriksel yük birimi coulombtur. Bu farklı bir birimdir. Çünkü kütle, uzunluk, zaman gibi SI birimleri ile şöyle ifade edilebilir: [m]1/2 [L]3/2 [s]−1.

Elektromanyetizma için iki ana doğal birim sistemi vardır:

  • Lorentz–Heaviside birimleri (elektromanyetizma birimleri sisteminin rasyoneli olarak sınıflandırılır).
  • Gauss birimleri (elektromanyetizma birimleri sisteminin irrasyoneli olarak sınıflandırılır).

Heaviside-Lorentz birimleri çok geneldir.[1] Maxwell denklemleri genellikle, Lorentz-Heaviside birimlerinden ve Gauss birimlerinden daha basittir.

Bu iki birim sistemindeki e temel yük denklemi şöyledir:

  • (Lorentz–Heaviside),
  • (Gauss)

Burada; ħ, indirgenmiş Planck sabiti; c, ışık hızı ve α≈1/137, ince yapılı sabittir.

c = 1 olduğu doğal birimler sisteminde Lorentz-Heaviside birimleri, SI birimlerinden türetilebilir. Bunun için ε0 = μ0 = 1 olarak normalleştirilir. Gauss birimleri de SI'dan türetilebilir. Fakat, tüm elektriksel alanların bölünmesi, tüm manyetik alınganlıkların 4π ile çarpılması, gibi karmaşık dönüşümler uygulanmalıdır.[2]

Doğal birimler sistemleri

Planck birimleri

Tablo 1: Temel Planck birimleri
Boyut İfade Değer[3] (SI birimleri)
Planck uzunluğuUzunluk (L) 1.616 199(97) × 10−35 m[4]
Planck kütlesiKütle (M) 2.176 51(13) × 10−8 kg[5]
Planck zamanıZaman (T) 5.391 06(32) × 10−44 s[6]
Planck yüküElektriksel yük (Q) 1.875 545 956(41) × 10−18 C[7][8][9]
Planck sıcaklığıSıcaklık (Θ) 1.416 833(85) × 1032 K[10]

Planck birimleri şöyle tanımlanır:

Burada c, bir vakumdaki ışık hızı; G, yerçekimi sabiti; , indirgenmiş Planck sabiti ve kB, Boltzmann sabitidir.

Planck birimleri doğal birimlerde bir sistemdir. Bunlar hiçbir fiziksel nesnenin, prototipin, hatta temel parçacığın bile özellikleri değildir. Yalnızca fizik yasalarının temel yapısını ifade ederler: c ve G, genel görelilikteki uzayzaman modelinin sabitleridir ve ℏ kuantum mekaniğinde enerjinin frekansa oranı veya dalga boyu ile eigen momentumunun çarpımıdır.

Özet tablosu

Adı / Sembol Planck
(Gauss ile
Stoney Hartree RydbergLorentz–Heaviside) Gauss birimleri)
Vakumdaki ışık hızı
İndirgenmiş Planck sabiti
Temel yük
Manyetik akı kuantumu
Kuantum Hall etkisi
Kütleçekim sabiti
Boltzmann sabiti
Elektron sabit kütlesi

Burada:

  • α, ince yapılı sabit, 7,2973525698(24)×10-3
  • αG, kütleçekim eşleşme sabiti, me/mP)21,752×10-45,
  • keV, kiloelektronvolt

Ayrıca bakınız

  • Fizik sabiti
  • Ölçü sistemleri

Kaynakça

  1. ^ http://books.google.com/books?id=12DKsFtFTgYC&pg=PA385 1 Ocak 2014 tarihinde Wayback Machine sitesinde arşivlendi. Thermodynamics and statistical mechanics, by Greiner, Neise, Stöcker
  2. ^ Dönüşümler için Gauss birimlerini formüle dönüştürmenin genel kurallarına bakınız.
  3. ^ "Fundamental Physical Constants from NIST". 20 Şubat 2011 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Kasım 2017. 
  4. ^ "CODATA — Planck length". 22 Kasım 2018 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Kasım 2017. 
  5. ^ "CODATA — Planck mass". 13 Eylül 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Kasım 2017. 
  6. ^ "CODATA — Planck time". 1 Temmuz 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Kasım 2017. 
  7. ^ "CODATA — electric constant". 23 Nisan 2007 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Kasım 2017. 
  8. ^ "CODATA — Planck constant over 2 pi". 11 Haziran 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Kasım 2017. 
  9. ^ "CODATA — speed of light in vacuum". 25 Haziran 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Kasım 2017. 
  10. ^ "CODATA — Planck temperature". 13 Mayıs 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Kasım 2017. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

Elektronvolt (eV) değeri yaklaşık 1.6 x 10−19 J olan enerjiye verilen addır. Tanım olarak bir elektronun, boşlukta, bir voltluk elektrostatik potansiyel farkı katederek kazandığı kinetik enerji miktarıdır. Diğer bir deyişle, 1 volt çarpı elektronun yüküne eşittir. 1 volt temel yük ile çarpıldığında buna eşit olmaktadır.

Fizikte Planck uzunluğu (ℓP), Planck birimleri olarak bilinen doğal birimler sisteminde uzunluk birimidir ve vakumda ışık hızı ile Planck zamanı çarpımına eşittir.

Fizikte Planck zamanı (tP), Planck birimleri olarak bilinen doğal birimler sisteminde zaman birimidir. Işığın bir vakumda bir Planck uzunluğu mesafesini kat ettiği süredir. Birim, onu ilk kullanan Max Planck'ten sonra adlandırılmıştır.

Fizikte Planck enerjisi (EP), Planck birimleri olarak bilinen doğal birimler sisteminde enerji birimidir.

Fizikte Planck kütlesi (mP), Planck birimleri olarak bilinen doğal birimler sisteminde kütle birimidir.

Fizikte Planck yoğunluğu (ρP), Planck birimleri olarak bilinen doğal birimler sisteminde yoğunluk birimidir.

Fizikte Planck yükü, Planck birimleri olarak bilinen doğal birimler sisteminde elektriksel yük birimidir ve boyutsuz fiziksel sabit olarak tanımlanır.

<span class="mw-page-title-main">Planck akımı</span>

Fizikte Planck akımı (IP), Planck birimleri olarak bilinen doğal birimler sisteminde elektrik akımı birimidir.

Planck sıcaklığı (TP), Planck birimleri olarak bilinen doğal birimler sisteminde sıcaklık birimidir.

<span class="mw-page-title-main">Planck basıncı</span>

Planck basıncı (pP), Planck birimleri olarak bilinen doğal birimler sisteminde basınç birimidir.

Planck gerilimi (VP), Planck birimleri olarak bilinen doğal birimler sisteminde gerilim birimidir.

Planck momentumu, Planck birimleri olarak bilinen doğal birimler sisteminde momentum birimidir. Aslında Planck momentumuna ait özel sembol yoktur. Fakat ile gösterilir. , Planck kütlesi ve , bir vakumdaki ışık hızıdır.

Planck açısal frekansıP), Planck birimleri olarak bilinen doğal birimler sisteminde açısal frekans birimidir.

Planck birimleri, aşağıdaki listede de gösterilen gibi SI tarafından kabul edilen ve yedi temel birimden türetilen fiziksel ölçü birimleridir. Bu yedi fiziksel sabit, eğer türetilen herhangi bir birimin sayısal değeri olarak kullanılırsa değeri 1 birim olur. Planck birimlerinin kuramsal fizikte derin anlamları vardır. Bunlar, fizik yasasının cebirsel ifadelerini, çok kolay biçimde basitleştirirler. Kuantum kütleçekimi gibi birleşik kuramların incelenmesi özel rol oynarlar.

Compton dalgaboyu bir parçacığın kuantum mekaniği özelliğidir. Compton dalgaboyu Arthur Compton tarafından elektronların foton saçılması olayı izah edilirken gösterilmiştir. Bir parçacığın Compton dalga boyu; enerjisi parçacığın durgun kütle enerjisine eşit olan fotonun dalgaboyuna eşittir. Parçacığın Compton dalgaboyu ( λ) şuna eşittir:

Bohr yarıçapı bir fizik sabitidir. Hidrojen atomunun, protonu ve elektronu arasındaki mesafeye eşittir. Bohr yarıçapının, bir atomda Bohr atom modeli içindeki rolünden dolayı adlandırılmak istenmiştir. Fakat bu olay Niels Bohr'dan sonra gerçekleşmiştir. Uluslararası birimler sisteminde Bohr yarıçapı:

 : serbest uzayın elektriksel geçirgenliği
 : Planck sabiti
 : elektronun kütlesi
 : elemanter yük
 : ışık hızı sabiti
 : ince yapı sabiti

Bohr magnetonu ya da Bohr manyetonu, orbital ya da spin açısal momentumu dolayısıyla elektronda oluşan manyetik momenti ifade etmek için kullanılan fiziksel sabit ya da doğal ölçü birimidir. SI birimleriyle şu şekilde tanımlanır:

İnce yapı sabiti ya da Sommerfeld sabiti (genelde α sembolüyle gösterilir), temel yüklü parçacıklar arasındaki elektromanyetik etkileşimim gücünü tanımlayan boyutsuz bir fiziksel sabittir. Temel yüklü bir parçacığın elektromanyetik alanla eşleşmesini ifade eden temel yükle (e) olan ilişkisi ε0ħcα = e2 formülüyle tanımlanmaktadır. Boyutsuz bir nicelik olduğundan, ölçü sistemi fark etmeksizin sayısal değeri yaklaşık 1/137'dir.