İçeriğe atla

Dizinin limiti

dış tarafından bir çember ile çevrelenmiş altıgen ve beşgenin diyagramı
Birim çemberi sınırlayan n-kenarlı düzgün çokgenlerin çevrelerinden oluşan dizinin limit değeri çemberin çevresine eşittir, yani . İçine dizilmiş çokgenlere karşılık gelen dizi aynı limite sahiptir.
nn sin(1/n)
10.841471
20.958851
...
100.998334
...
1000.999983

n pozitif tam sayısı büyüdükçe, n sin(1/n) değeri 1'e yaklaşır. Bu durumda "n sin(1/n) dizisinin limiti 1'e eşittir" deriz.

Matematikte, bir dizinin limiti, dizinin terimlerinin yaklaştığı değerdir.[1] Eğer böyle bir limit varsa diziye yakınsak denir. Yakınsamayan diziye ıraksak denir.[2] Bir dizinin limiti, analizin nihai olarak dayandığı temel kavram olarak görülür.[1]

Limitler, herhangi bir metrik veya topolojik uzayda tanımlanabilir. Fakat çoğunlukla gerçel sayılarda tanımlandığını görürüz.

Tarihi

Yunan filozof Zeno of Elea limit işlemleri içeren paradoksları formüle etmesiyle meşhurdur.

Leukippos, Demokritos, Antifon, Eudoksos ve Arşimet bir alan ya da bir hacmi bulmak için yaklaşımlardan oluşan ve sonsuz dizi kullanan tüketme yöntemini geliştirdi. Arşimet sonsuz dizinin terimleri toplamakta ki buna günümüzde geometrik seri diyoruz, başarılı oldu.

Newton şu eserlerinde serilerle uğraştı: Sonsuz serilerle analiz (1669'da yazıldı, el yazması olarak yayıldı, 1711'de basıldı), Diferansiyel kalkülüs ve sonsuz seriler yöntemi (1671'da yazıldı, 1736'da İngilizce çevirisi basıldı, Latince aslı ise çok sonra basıldı) ve Tractatus de Quadratura Curvarum (1693'te yazıldı, Optiks eserine ek olarak 1704'te basıldı). Sonraki eserinde, Newton (x+o)n binom açılımını ele aldı ve sonraları (o→0 kabulü ile) limit alarak doğrusallaştırdı.

18. yüzyılda, Euler gibi matematikçiler tam doğru anda durdurarak bazı ıraksak serileri toplamakta başarılı oldu; hesaplanabildiği sürece limitinin olup olmadığını umursamadılar. Yüzyılın sonunda, Lagrange, Théorie des fonctions analytiques (1797) adlı eserinde titizlik eksikliğinin kalkülüste daha fazla ilerlemenin önüne geçtiğini söyledi. Gauss, hipergeometrik seriler (1813) adlı çalışmasında bir serinin hangi şartlar altında bir limite yakınsadığını ilk kez titizlikle inceledi.

Limitin modern tanımı (her ε için öyle bir N indisi vardır ki ...) Bernhard Bolzano (Der binomische Lehrsatz, Prag 1816, o zamanlar çok az dikkat çekti) ve 1870'lerde Karl Weierstrass tarafından yapıldı.

Gerçel sayılar

{an} yakınsak dizisinin grafiği mavi ile gösteriliyor. n artarken dizinin 0 limit değerine yakınsadığı görülebiliyor.

Gerçel sayılarda, eğer dizideki sayılar başka bir sayıya değil de yalnızca 'ye yaklaşıyorsa sayısı dizisinin limitidir.

Örnekler

  • Eğer bir c sabiti için ise, .[ispat 1]
  • Eğer ise, .[ispat 2]
  • Eğer çift iken ise ve tek iken ise, . ( tek iken olması konuyla alakasızdır.)
  • Herhangi bir gerçel sayı için, ondalık yaklaşmalar yapılarak o sayıya yakınsayan bir dizi oluşturabilir. Örneğin, dizisi sayısına yakınsar. Dikkat edilmeli ki ondalık gösterimi az önceki dizinin limitidir ve matematiksel olarak şöyle tanımlanır
.
  • Bir dizinin limitini bulmak her zaman kolay değildir. Örneğin, , aynı zamanda e sayısı olarak bilinir veya Aritmetik-geometrik ortalama. Bu gibi durumlarda sıkıştırma teoremi genellikle kullanışlıdır.

Biçimsel Tanım

Aşağıdaki şart sağlanıyorsa " dizisinin limiti sayısıdır" deriz:

  • Her gerçel sayısı için, öyle bir doğal sayısı vardır ki, her doğal sayısı için, elde ederiz.

Başka bir ifade ile, her yakınlık ölçüsü için, dizinin terimleri o miktarda limite yakındır. dizisi limitine yakınsıyor ya da yaklaşıyor denilir ve veya biçiminde yazılır.

Eğer dizi bir limite yakınsıyorsa, o zaman yakınsaktır, aksi takdirde ıraksaktır.

Özellikler

Dizilerin limitleri sıradan aritmetik işlemlere benzer davranır. Eğer ve ise, ve . b ve sıfırdan farklı ise, .

Herhangi bir f sürekli fonksiyonu için, ise, . Aslında, herhangi bir gerçel değerli f fonksiyonu sürekli ise ancak ve ancak dizilerin limitlerini değiştirmiyordur. (Ama süreklilik daha genel bir kavram olarak ele alındığında bunun doğru olması gerekmez.)

Gerçel dizilerin limitlerinin diğer bazı önemli özellikleri şunlardır:

  • Bir dizinin limiti biriciktir.
  • (Eğer ise)
  • Bazı lerden daha büyük tüm ler için ise, .
  • (Sıkıştırma Teoremi) Tüm için ve ise, .
  • Eğer bir dizi sınırlandırılmış ve monotonik ise o dizi yakınsaktır.
  • Bir dizi yakınsak ise ancak ve ancak tüm alt dizileri de yakınsaktır.

Bu özellikler hantal resmi tanımların doğrudan kullanımına gerek kalmaksızın limitleri kanıtlamak için yaygın olarak kullanılır. Yukarıdaki özellikleri kullanarak bir kere olduğu ispatlandıktan sonra , () olduğunu göstermek kolaydır.

Sonsuz limitler

Her K için, bir N vardır öyle ki, her için, ; öyle ki seçilen herhangi K için dizinin terimleri o K değerinden daha büyük ise, dizisi sonsuza yaklaşıyor denilir ve veya şeklinde ifade edilir. Benzer bir şekilde, her K için, bir N vardır öyle ki, her için, ise . Eğer bir dizi sonsuza ya da eksi sonsuza yaklaşıyorsa, o dizi ıraksaktır. (Ancak, ıraksak bir dizi sonsuza ya da eksi sonsuza yaklaşmak zorunda değildir.)

Metrik uzaylar

Tanım

Tüm ε > 0 için, bir N vardır öyle ki, her için, ise (X, d) metrik uzayının bir x noktası (xn) dizisinin limitidir. Bu tanım ve iken gerçel sayılar için yapılmış tanım ile aynıdır.

Özellikler

Herhangi bir f sürekli fonksiyonu için, eğer ise, . Aslında, bir f fonksiyonu sürekli ise ancak ve ancak uygulandığında dizilerin limitlerini değiştirmiyordur.

Eğer varsa dizilerin limitleri biriciktir, farklı noktaların belli bir pozitif uzaklık ile ayrılması gibi, bu uzaklığın yarısından az her için, dizinin terimleri her iki noktadan uzaklığı içerisinde olamaz.

Topolojik uzaylar

Tanım

x'in her U komşuluğu için, bir N vardır öyle ki, her , ise (X, τ) topolojik uzayında bir x noktası, (xn) dizisinin limitidir. Eğer (X,d) metrik uzay ve d tarafından üretilen bir topoloji ise bu tanım metrik uzay için yapılmış tanım ile aynıdır.

Bir T topolojik uzayında noktalarının bir dizisinin limiti, özel bir fonksiyonun limitidir: bu fonksiyonun; tanım kümesi, ile genişletilmiş gerçel sayılar kümesinin indüklenmiş topoloji uzayındaki kümesidir, değer kümesi T, girdisi n - bu uzayda 'nın limit noktası olan - +∞'a yaklaşır.

Özellikler

Eğer X Hausdorff uzayı ise, dizilerin limitleri var oldukları yerde biriciklerdir. Bunun genel bir durum olması gerekmediğine dikkat edin. Özellikle, x ve y noktaları topolojik olarak benzer ise, x değerine yakınsayan herhangi bir dizi y değerine de yakınsamalıdır. Bunun tersi de geçerlidir.

Cauchy dizileri

xn ve n eksenlerinde bir (xn) Cauchy dizisinin grafiği mavi ile gösteriliyor. Dizideki terimler birbirine gitgide yaklaştıkça ve n değeri büyüdükçe dizinin bir limit noktasına yakınsadığını görsel olarak görebiliyoruz. Gerçel sayılarda her Cauchy dizisi bir limite yakınsar.

Cauchy dizisi, n değeri büyüdükçe terimleri birbirine çok çok yakınlaşan bir dizidir. Cauchy dizisi kavramı, metrik uzayda diziler ve özellikle gerçel analiz çalışmalarında çok önemlidir. Gerçel analizin en önemli sonuçlarından biri Diziler için yakınsaklığın Cauchy krakterizasyonudur.

Bir dizi yakınsaksa ancak ve ancak Cauchy'dir.

Hiperreel sayılarda tanımı

Hiperreel sayılar kullanılarak yapılan limit tanımı "indisin çok büyük değerlerine karşılık gelen terim limite çok yakın olur" sezgisini formüle eder. Daha net olursak, eğer bütün sonsuz hipernatürel H için, xH terimi L sayısına sonsuz yakındır, yani, xH - L farkı sonsuz küçüktür. Buna eşit olarak, L xH'ın standard parçasıdır

.

Nitekim, limit şu formül ile tanımlanabilir

ki limit varsa ancak ve ancak eşitliğin sağ tarafı sonsuz bir H seçiminden bağımsızdır.

Ayrıca bakınız

  • Fonksiyonun limiti
  • Netin Limitii — Net bir dizinin topolojik genellemesidir.
  • Yakınsaklık modları
  • Kayma kuralı

Notlar

  1. ^ a b Courant (1961), p. 29.
  2. ^ Courant (1961), p. 39.

İspatlar

  1. ^ İspat: seç. Her için,
  2. ^ İspat: seç. (taban fonksiyon). Her için, .

Kaynakça

  • Courant, Richard (1961). "Differential and Integral Calculus Volume I", Blackie & Son, Ltd., Glasgow.
  • Frank Morley and James Harkness A treatise on the theory of functions (New York: Macmillan, 1893)
  • Vikipedi Limit of a sequence maddesi. (Son Erişim Tarihi: 02.08.2015)

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">Limit</span> Sayıların ucu

Limit kelimesi Latince Limes ya da Limites 'den gelmekte olup sınır, uç nokta anlamındadır. Öklid ve Arşimet tarafından eğrisel kenarlara sahip şekillerle ilgili olan teoremlerde kullanılmıştır. Limit kavramı, çok önceleri kullanılmasına rağmen sonra unutulmuş ve daha sonra Newton ile Leibniz'in eserlerinde görülmüştür. Mesela, diferansiyel hesapta bir eğri sonsuz küçük uzunlukta sonsuz kenara sahip bir çokgen olarak kabul edilir. Limit kavramından ortaya çıkan diferansiyel hesap, pek çok fizik probleminin kolayca ele alınmasını sağlar.

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

<span class="mw-page-title-main">Dirac delta fonksiyonu</span>

Adını Paul Dirac' tan alan Dirac delta fonksiyonu tek boyutta

<span class="mw-page-title-main">Dizi</span> aynı tip elemanların sıralı listesi (sonlu veya sonsuz)

Dizi, bir sıralı listedir. Bir küme gibi, ögelerden oluşur. Sıralı ögelerin sayısına dizinin uzunluğu denir. Kümenin aksine sıralı ve aynı ögeler dizide farklı konumlarda birkaç kez bulunabilir. Tam olarak bir dizi, tanım kümesi sayılabilen toplam sıralı kümelerden oluşan bir fonksiyon olarak tanımlanabilir. Örneğin doğal sayılar gibi. Diziler bu örnekte olduğu gibi sonlu olabilir. Ya da tüm çift pozitif tam sayılar gibi sonsuz olabilir.

<span class="mw-page-title-main">Üstel fonksiyon</span>

Üstel işlev veya üstel fonksiyon, matematikte kullanılan işlevlerden biridir. Genel tanımı ax şeklindedir, burada taban a artı değere sahip bir sabittir ve üst x değişkendir. Çoğunlukla

sembolüyle gösterilir. Kimi kitaplarda ise;
sembolü kullanılır.

Matematikte sonuşmaz veya asimptot, belirli bir A eğrisine istenildiği kadar yaklaşabilen ikinci bir B eğrisine verilen addır. Bir başka deyişle, A üzerinde ilerledikçe, A ve B arasındaki mesafe azalır ve sıfıra yaklaşır. Asimptot kelimesi, Yunanca "beraber düşmek" anlamındaki simpiptein fiilinin olumsuz halinden türemiştir.

Matematikte, Stolz-Cesàro teoremi, bir dizinin yakınsaklığını kanıtlamak için kullanılan bir yöntemdir.

<span class="mw-page-title-main">İntegral testi</span>

Matematikte integral testi veya bir diğer deyişle yakınsaklık için integral testi, terimleri negatif olmayan sonsuz serilerin yakınsaklığını belirlemek için kullanılan bir yöntemdir. Bu testin erken bir versiyonu 14. yüzyılda Hint matematikçi Madhava ve takipçileri tarafından bulunmuştur. Avrupa'da ise Maclaurin ve Cauchy tarafından geliştirilmiş olup aynı zamanda Maclaurin-Cauchy testi olarak da bilinir.

Matematiksel çözümlemede Cesàro toplamı bir sonsuz diziye toplam değeri atamanın farklı bir yoludur. Bir dizi A toplamına yakınsıyorsa bu dizinin Cesàro toplamı da A olur. Cesàro toplamı, yakınsamayan dizilere de değer atayabilmektedir. Ne var ki, artı sonsuz değerine yönelen bir dizi hiçbir koşulda sonlu bir toplam değerine sahip olamayacaktır.

Matematikte Cauchy çarpımı, ve gibi iki dizinin

<span class="mw-page-title-main">Kuvvet serisi</span>

Matematikte kuvvet serisi

Matematikte, bir kuvvet serisinin yakınsaklık yarıçapı negatif olmayan bir gerçel sayı veya ∞ olan bir niceliktir. Verilen bir kuvvet serisinin yakınsaklık yarıçapı serinin yakınsak olduğu bölgeyi gösterir. Bu yakınsaklık yarıçapının içinde kalan bölgede, kuvvet serisi mutlak yakınsak ve aynı zamanda tıkız yakınsaktır. Seri yakınsak ise, o zaman bu seri bir analitik fonksiyonun bu yakınsaklık yarıçapının belirlediği bölgenin içinde kalan bölgede yakınsayan bir Taylor serisidir.

Matematik'te Lp uzayı, sonlu boyutlu vektör uzayı için p-norm'un doğal bir genelleme kullanarak tanımlı fonksiyon uzayı'dır.Bazen Lebesque uzayı denir.İlk Frigyes Riesz tarafından Bourbaki grubu Bourbaki 1987 olarak tanıtılmasına rağmen,Henri Lebesgue Dunford & Schwartz 1958, III.3, adına ithaf edilmiştir. fonksiyonal analiz'de Banach uzayı'nın ve topolojik vektör uzaylarının önemli bir sınıfını Lp uzayı formu oluşturur.Lebesgue uzayının fizik, istatistik, finans, mühendislik ve diğer disiplinlerde uygulamaları var.

Matematikte bir fonksiyonun limiti, kalkülüs ve analizde kullanılan bir temel kavramdır ve belirli bir girişe yaklaşan bir fonksiyonun davranışı ile ilgilidir.

Pro sonlu gruplar, Matematikte ilk olarak sayılar kuramında görülmüştür. 19. yüzyılın sonlarına doğru kongurans sistemlerini çalışmak için Alman matematikçi Hensel tarafından bulunan p-sel tamsayılar halkası Zp, pro-sonlu grupların en temel örneklerinden birisidir. Alman matematikçi Krull herhangi bir sonsuz Galois genişlemesinin Galois grubunun aslında doğal bir şekilde pro-sonlu grup yapısına sahip olduğunu gördü. Bu yapının sonlu Galois genişlemelerinin Galois gruplarıyla belirlendiğini gösterdi. Daha sonra, cebirsel geometri alanında Grothendieck, şemaların temel gruplarını birer pro-sonlu grup olarak tanıttı.

<span class="mw-page-title-main">Sıkıştırma teoremi</span>

Kalkülüste, sandviç teoremi, sandviç kuralı, polis teoremi olarak da bilinen sıkıştırma teoremi bir fonksiyonun limitiyle ilgili bir teoremdir. İtalya'da teorem, jandarma teoremi olarak da bilinir.

Matematiğin bir alt dalı olan fonksiyonel analizde, tam normlu vektör uzayılarına Banach uzayı denir. Tanımı gereği, Banach uzayı, vektör uzunluğunun ve vektörler arasındaki mesafenin hesaplanmasına vesile olan bir metriğe sahip bir vektör uzayıdır ve bu metrik uzayda herhangi bir Cauchy vektör dizisinin her zaman uzayın içinde kalan ve iyi tanımlanmış bir limiti olması anlamında tamdır.

Matematikte, bir càdlàg fonksiyon, gerçek sayıların bir altkümesi üzerinde tanımlı ve bu tanım kümesinin her noktasında sağdan sürekli, soldan limitli olan bir fonksiyondur. Cadlàg fonksiyonlar, özellikle sıçramaları olan stokastik süreçlerin incelenmesinde önemlidir. Bir tanım kümesi üzerindeki càdlàg fonksiyonların kümesine Skorokhod uzayı denir.