İçeriğe atla

Dirichlet serisi

Matematikte Dirichlet serisi

biçimindeki herhangi bir seriyi ifade etmektedir.

Burada s ve an (n = 1, 2, 3, …) karmaşık sayılardır. Bu ifade genel Dirichlet serisinin özel bir durumudur.

Dirichlet serileri çözümlemeli sayı kuramında önemli bir yere sahiptir. Riemann zeta işlevinin en ünlü tanımı Dirichlet L-işlevlerinde olduğu gibi Dirichlet serilerine gerek duymaktadır. Seri, Johann Peter Gustav Lejeune Dirichlet'ye adanmıştır.

Örnekler

En ünlü Dirichlet serisi

Riemann zeta işlevidir. Bir diğeri

biçiminde ifade edilen seridir. Burada μ(n) Möbius işlevini belirtmektedir. Bunlar ve aşağıda sıralanan serilerin büyük bir bölümü bilinen serilere Möbius evirtimi ve Dirichlet katlaması uygulanarak elde edilebilmektedir. Örneğin, bir Dirichlet karakteri olmak koşuluyla

ifadesine ulaşılır. Burada bir Dirichlet L-işlevini göstermektedir.

Diğer özdeşlikler ise şunlardır:

φ(n) totient olmak koşuluyla

ve

Burada σa(n) bölen işlevi göstermektedir. Bu işlevi içeren diğer özdeşlikler

olarak yazılabilir.

Zeta işlevinin logaritması

biçiminde tanımlanmaktadır. Bu ifade Re(s) > 1 için geçerlidir. von Mangoldt işlevini göstermektedir. Buradan logaritmik türev

olarak hesaplanır.

Liouville işlevi () kullanılarak

ifadesine ulaşılır.

Ramanujan toplamı da benzer bir örnek sunmaktadır.

Dirichlet serisinin analitik özellikleri: Yakınsaklık yatay ekseni

Karmaşık sayılar kümesinde tanımlı {an}nN işlevi için

ifadesi karmaşık değişken s'nin bir işlevi olarak tanımlanabilmektedir.

{an}nN bir sınırlı seriyse buna karşılık gelen f Dirichlet serisi s'nin yarı açık düzleminde mutlak yakınsar (Re(s) > 1 olmak koşuluyla). Genel olarak, an = O(nk) eşitliği sağlanıyorsa seri Re(s) > k + 1 yarı düzleminde mutlak yakınsar.

an + an + 1 + ... + an + k toplamlar kümesi n'de sınırlı ve k ≥ 0 ise yukarıdaki sonsuz seri Re(s) > 0 koşulunu sağlayacak biçimde yakınsar.

Her iki durumda da f, yarı açık düzlemde tanımlı bir analitik işlevdir.

Bir Dirichlet serisinin yakınsaklık yatay ekseni karmaşık düzlemdeki dik doğrunun gerçel ekseni kestiği nokta olarak tanımlanmaktadır. Böylece, bu noktanın sağında kalan bölge yakınsaklığı, solunda kalan bölge ıraksaklığı simgeler. Bu, üs serisindeki yakınsaklık yarıçapına benzer bir kavramdır.

Türevleri

eşitliği sağlanıyorsa

ifadesi geçerlidir. Bir ƒ(n) tümüyle çarpımsal işlevi tanımlanabiliyor ve seri Re(s) > σ0 için yakınsıyorsa

ifadesi Re(s) > σ0 için yakınsar. Burada von Mangoldt işlevini göstermektedir.

Çarpımları

ve

olduğu varsayılsın.

F(s) ve G(s), s > a ve s > b için mutlak yakınsak ise

ifadesine ulaşılır.

a = b ve ƒ(n) = g(n) eşitlikleri sağlanıyorsa

sonucu elde edilir.

İntegral dönüşümleri

Dirichlet serisinin Mellin dönüşümü Perron formülüyle hesaplanabilmektedir.

Ayrıca bakınız

  • Genel Dirichlet serisi
  • Euler çarpımı

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Totient</span>

Totient sayılar teorisinde, bir tam sayının o sayıdan daha küçük ve o sayı ile aralarında asal olan sayma sayı sayısını belirten fonksiyondur. Genellikle Euler Totient ya da Euler'in Totienti olarak adlandırılan Totient, İsviçreli matematikçi Leonhard Euler tarafından yaratılmıştır. Totient fonksiyonu, Yunan harflerinden ile simgelendiği için Fi fonksiyonu olarak da anılabilir.

<span class="mw-page-title-main">Poisson dağılımı</span>

Poisson dağılımı, olasılık kuramı ve istatistik bilim kollarında bir ayrık olasılık dağılımı olup belli bir sabit zaman birim aralığında meydana gelme sayısının olasılığını ifade eder. Bu zaman aralığında ortalama olay meydana gelme sayısının bilindiği ve herhangi bir olayla onu hemen takip eden olay arasındaki zaman farkının, önceki zaman farklarından bağımsız oluştuğu kabul edilir.

<span class="mw-page-title-main">Zeta dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, zeta dağılımı bir ayrık olasılık dağılımıdır. Eğer X s parametresi ile zeta dağılımı gösteren bir bir rassal değişken ise, Xin k tam sayısı değerini almasının olasılığı şu olasılık kütle fonksiyonu ile belirtilir:

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

Apéry sabiti, matematiğin gizemli sayılarından biridir. Elektrodinamik alanında elektronun jiromagnetik oranının ikinci ve üçüncü derece terimlerinin yanı sıra birçok fiziksel soruda karşılaşılan bu sabit, paydasında üstel fonksiyon barındıran integrallerin çözümünde de kullanılmaktadır. Debye modelinin iki boyut için hesaplanması buna örnek olarak gösterilebilir. Sayı, aşağıdaki gibi tanımlanmaktadır.

Matematikte zeta sabiti, bir tam sayının Riemann zeta fonksiyonunda yerine yazılmasıyla elde edilen sayıdır. Bu madde farklı tam sayı değerleri için zeta fonksiyonu özdeşlikleri içermektedir.

Matematikte ıraksak seri yakınsak olmayan bir sonsuz seridir. Bu, serinin kısmi toplamlarının herhangi bir limit değeri olmadığı anlamına gelmektedir.

Matematik'teki Dirichlet beta fonksiyonu özel fonksiyon'dur, aslında modifiye edilerek parantezlenmiş Riemann zeta fonksiyonu'nundan ibarettir. özel bir şekli Dirichlet L-fonksiyon'udur.

Matematiksel çözümlemede Cesàro toplamı bir sonsuz diziye toplam değeri atamanın farklı bir yoludur. Bir dizi A toplamına yakınsıyorsa bu dizinin Cesàro toplamı da A olur. Cesàro toplamı, yakınsamayan dizilere de değer atayabilmektedir. Ne var ki, artı sonsuz değerine yönelen bir dizi hiçbir koşulda sonlu bir toplam değerine sahip olamayacaktır.

<span class="mw-page-title-main">Dirichlet eta işlevi</span>

Matematiğin analitik sayı kuramı alanında Dirichlet eta işlevi

<span class="mw-page-title-main">Riemann zeta işlevi</span>

Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.

<span class="mw-page-title-main">Poligama fonksiyonu</span>

Matematik'te, poligama fonksiyonu' eşitliğin soludur ve türevin kuvvetine m konulduğunda eşitliğin sağ tarafındaki gama fonksiyonu'nun logaritma'sının (m + 1). türevi olarak tanımlanır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Matematiksel analizin sayı teorisinde Euler–Mascheroni sabiti matematiksel sabit'tir. Yunan harfi Yunanca: γ (gama) ile gösterilir.

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

Matematik'te, Asal zeta fonksiyonu Riemann zeta fonksiyonu'nun bir analoğudur. sonsuz seriler içinde tanımlanır, yakınsaklık için olmalıdır:

Matematikte üretim fonksiyonu veya üretim işlevi verilen bir dizinin girdilerinin bilgisini katsayılarında tutan bir biçimsel kuvvet serisidir.

Çarpım fonksiyonu, sayılar teorisinde bir f(n) aritmetik fonksiyonudur. Bu fonksiyon, tanım kümesindeki her x ve y çifti için çarpma işlemini koruyan fonksiyondur.

Sayılar teorisi'nde asal omega fonksiyonları ve , doğal sayısının asal çarpanlarının sayısını hesaplamak için kullanılır. fonksiyonu doğal sayısının birbirinden farklı asal çarpanlarının sayısını hesaplarken fonksiyonu sayının toplam asal çarpan sayısını hesaplar. Yani birbirinden farklı asal sayıları için ise ve olur.

Möbius fonksiyonu , 1832 yılında Alman matematikçi August Ferdinand Möbius tarafından ortaya atılan çarpımsal bir fonksiyondur. Temel ve analitik sayılar teorisi'nde çoğunlukla kullanılan fonksiyon, genellikle Möbius inversiyon formülü'nün bir parçası olarak görülür. Gian-Carlo Rota'nın 1960'lı yıllardaki çalışmaları sonucunda ile gösterilen Möbius fonksiyonunun genellemeleri kombinatoriğe tanıtılmıştır.