İçeriğe atla

Dirichlet beta fonksiyonu

Matematik'teki Dirichlet beta fonksiyonu (diğer bir deyişle Catalan beta fonksiyonu) özel fonksiyon'dur, aslında modifiye edilerek parantezlenmiş Riemann zeta fonksiyonu'nundan ibarettir. özel bir şekli Dirichlet L-fonksiyon'udur.

Tanım

Dirichlet beta fonksiyonu'nun tanımı

veya eşdeğeri,

Re(s) > 0 olduğu her durum için geçerlidir.

Alternatif olarak, aşağıdaki Hurwitz zeta fonksiyonu'nun kompleks değerleri için s-plan'da yapılan tanım

Diğer bir eşdeğer tanımlama, Lerch transcendent terimleri içerisindedir:

s 'nin bütün karmaşık değerleri için bu bir kez daha geçerlidir.

Fonksiyonal denklem

fonksiyonal denklem beta fonksiyonunun açılımı kompleks düzlem'in sol tarafında Re(s)<0 için,

olarak verilir.

Burada Γ(s) Gama fonksiyonu'dur.

Özel değerler

Bazı tanınmış özel değerler:

burada G Catalan sabiti'dir. ve

burada poligama fonksiyonu'nun sayısal bir değeridir. her pozitif k tam sayısı için genelleştirirsek:

Burada olarak gösterlien Euler sayısı'dır.. k ≥ 0,

için açılımlanmış şekli:

Dolayısıyla bağıntının bütün negatif integral değerleri için fonksiyon tuhaf bir şekilde gözden kaybolur.

Ayrıca bakınız

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">İntegral tablosu</span> Vikimedya liste maddesi

İntegral, Matematikteki temel işlemlerden biridir. Bu maddede yaygın integrallerin hesaplanışını bulacaksınız.

<span class="mw-page-title-main">Gama fonksiyonu</span>

Gama fonksiyonu, matematikte faktöriyel fonksiyonunun karmaşık sayılar ve tam sayı olmayan reel sayılar için genellenmesi olan bir fonksiyondur. Г simgesiyle gösterilir.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Cauchy dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Cauchy-Lorentz dağılımı bir sürekli olasılık dağılımı olup, bu dağılımı ilk ortaya atan Augustin Cauchy ve Hendrik Lorentz anısına adlandırılmıştır. Matematik istatistikçiler genel olarak Cauchy dağılımı adını tercih edip kullanmaktadırlar ama fizikçiler arasında Lorentz dağılımı veya Lorentz(yen) fonksiyon veya Breit-Wigner dağılımı olarak bilinip kullanılmaktadır.

Apéry sabiti, matematiğin gizemli sayılarından biridir. Elektrodinamik alanında elektronun jiromagnetik oranının ikinci ve üçüncü derece terimlerinin yanı sıra birçok fiziksel soruda karşılaşılan bu sabit, paydasında üstel fonksiyon barındıran integrallerin çözümünde de kullanılmaktadır. Debye modelinin iki boyut için hesaplanması buna örnek olarak gösterilebilir. Sayı, aşağıdaki gibi tanımlanmaktadır.

Catalan sabiti matematikte bazen kombinatorik'te tahminler için kullanılır.Tanımı

<span class="mw-page-title-main">Dirichlet eta işlevi</span>

Matematiğin analitik sayı kuramı alanında Dirichlet eta işlevi

<span class="mw-page-title-main">Riemann zeta işlevi</span>

Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

<span class="mw-page-title-main">Trigama fonksiyonu</span> Poligama fonksiyonu

Matematik'te, trigama fonksiyonu, ψ1(z), olarak gösterilen ikincil poligama fonksiyonu'dur ve tanımı

.

Matematiksel analizin sayı teorisinde Euler–Mascheroni sabiti matematiksel sabit'tir. Yunan harfi Yunanca: γ (gama) ile gösterilir.

Matematikte, Gauss sabiti, G ile gösterilir,1 ve karekök 2 aritmetik-geometrik ortalama'sının tersi olarak tanımlanır.

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

Matematikte, a Neumann polinomali,Carl Neumann tarafından özel durum için sunulan, Bessel fonksiyonu terimleri içerisinde fonksiyonların 1/z açılımında kullanılan bir polinomdur.

<span class="mw-page-title-main">Üçgen dalga</span>

Üçgen dalga, ismini üçgen şeklinden alan bir sinüzoidal olmayan dalga şeklidir. Üçgen dalga periyodik, parçalı lineer, sürekli gerçel bir fonksiyondur.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

Paramanyetik bir malzemede, malzemenin mıknatıslanması genel olarak uygulanan manyetik alanla orantılıdır. Fakat eğer malzeme ısıtılırsa, bu oran düşer: Belirli bir sıcaklığa kadar, mıknatıslanma sıcaklıkla ters orantılıdır. Bu kavram “Curie Yasası” tarafından kapsanmaktadır:

Aşağıdaki matematiksel seriler listesi, sonlu ve sonsuz toplamlar için formüller içerir. Toplamları değerlendirmek için diğer araçlarla birlikte kullanılabilir.

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.