İçeriğe atla

Dini testi

Matematikte Dini ve Dini-Lipschitz testleri, bir fonksiyonun Fourier serisinin bir noktada yakınsadığını kanıtlamak için kullanılabilen oldukça kesin testlerdir. Bu testler, Ulisse Dini ve Rudolf Lipschitz'in arkasından isimlendirilmiştir.[1]

Tanım

f, [0,2π] üzerinde bir fonksiyon, t bir nokta ve δ, bir pozitif sayı olsun. t 'deki yerel süreklilik modülüsü

ile tanımlanır. f burada periyodik bir fonksiyondur; yani t = 0 ise ve ε negatifse, o zaman şöyle tanımlarız: f(ε) = f(2π + ε).

Global sürekliklilik modülüsü (veya basitçe süreklilik modülüsü) ise

ile tanımlanır. Bu tanımlarla esas sonuçları ifade edebiliriz.

Teeorem (Dini testi): Bir f fonksiyonu bir t noktasında

eşitsizliğini sağlasın. O zaman, f 'nin Fourier serisi t 'de f(t) 'ye yakınsar.

Örneğin, teorem iken tutar ama iken tutmaz.

Teorem (Dini-Lipschitz testi): Bir f fonksiyonu

ifadesini sağlasın. O zaman, f 'nin Fourier serisi düzgün bir şekilde f 'ye yakınsar.

Özelde, Hölder sınıfında yer alan herhangi bir fonksiyon Dini-Lipschitz testini sağlar.

Kesinlik

Her iki test de kendi türlerinin en iyisidir. Dini-Lipschitz testi için, süreklilik modülüsü testini o yerine O ile sağlayan bir f fonksiyonu inşa etmek mümkündür; yani

olacak ve f 'nin serisi ıraksayacak şekilde. Dini testi, kesinlik ifadesi ise biraz daha uzundur. Şunu ifade eder:

olan herhangi bir Ω fonksiyonu için bir f fonksiyonu vardır öyle ki

ve f 'nin Fourier serisi 0'da ıraksar.

Ayrıca bakınız

  • Fourier serilerinin yakınsaklığı.

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

<span class="mw-page-title-main">Dirac delta fonksiyonu</span>

Adını Paul Dirac' tan alan Dirac delta fonksiyonu tek boyutta

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Katı cisim dinamiği</span>

Katı-cisim dinamiği, dış kaynaklı kuvvetler karşısında hareket eden birbiri ile ilişkili sistemlerin analizini inceler. Her bir gövde için, cisimlerin katı olduğu ve bu nedenle uygulanan kuvvetler nedeni ile deforme olmadıkları, sistemi tanımlayan taşıma ve dönme parametrelerinin sayısını azaltarak analizi basitleştirmektedir.

Kapasite veya diğer adıyla sığa, bir cismin elektrik yükü depo etme yeteneğidir. Elektrikle yüklenebilen her cisim sığa barındırmaktadır. Enerji depolama aracının en yaygın formu paralel levhalı sığaçlardır. Paralel levhalı sığaçta, sığa iletken levhanın yüzey alanıyla doğru orantılıdır ve levhalar arasındaki uzaklığın ayrımıyla da ters orantılıdır. Eğer levhaların yükleri +q ve –q ise ve V levhalar arasındaki voltajı veriyorsa, sığa C şu şekildedir;

Termodinamiğin(Isıldevinimin) ikinci yasası, izole sistemlerin entropisinin asla azalamayacağını belirtir. Bunun sebebini izole sistemlerin termodinamik dengeden spontane olarak oluşmasıyla açıklar. Buna benzer olarak sürekli çalışan makinelerin ikinci kanunu imkânsızdır.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Mutlak sıcaklık</span> mutlak sıcaklık ölçüsü

büyüklüğünün veya mutlak sıcaklık ya da termodinamik sıcaklık olarak tanımlanan büyüklüğünün iki önemli fiziksel sonucu vardır.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

Periyodik fonksiyon, matematikte belli zaman aralığıyla kendini tekrar eden olguları ifade eden fonksiyonlara verilen isimdir. Tekrar etme süresi "periyot" olarak bilinir. Trigonometrik fonksiyonlar en tipik periyodik fonksiyonlardır. Bununla birlikte, diğer periyodik fonksiyonlar da trigonometrik fonksiyonların toplamı olarak ifade edilebilirler.

<span class="mw-page-title-main">Poligama fonksiyonu</span>

Matematik'te, poligama fonksiyonu' eşitliğin soludur ve türevin kuvvetine m konulduğunda eşitliğin sağ tarafındaki gama fonksiyonu'nun logaritma'sının (m + 1). türevi olarak tanımlanır.

Elektromanyetik dalga denklemi, elektromanyetik dalgaların bir ortam boyunca ya da bir vakum ortamı içerisinde yayılmasını açıklayan, ikinci dereceden bir kısmi diferansiyel denklemdir. Denklemin, ya elektrik alanı E ya da manyetik alan B cinsinden yazılan homojen formu şöyledir:

Kuantum mekaniği ve Kuantum alan kuramı içinde yayıcı belirli bir zamanda bir yerden başka bir yere seyahat etmek ya da belirli bir enerji ve momentum ile seyahat için bir parçacığın olasılık genliği verir. Yayıcılar Feynman diyagramları iç hatları üzerinde sanal parçacık'ların katkısını temsil etmek üzere kullanılmaktadır. Ayrıca partikül uygun dalga operatörünün tersi olarak görülebilir ve bu nedenle sıklıkla Green fonksiyonları olarak adlandırılır.

<span class="mw-page-title-main">Üçgen dalga</span>

Üçgen dalga, ismini üçgen şeklinden alan bir sinüzoidal olmayan dalga şeklidir. Üçgen dalga periyodik, parçalı lineer, sürekli gerçel bir fonksiyondur.

Dulong-Petit Yasası, bir termodinamik yasası olup, 1819 yılında Fransız fizikçiler Pierre Louis Dulong ve Alexis Thérèse Petit tarafından, bir kristalin molar özgül ısısı olarak ifade edilmiştir. Bu iki bilim insanı, deneysel yöntemle, bir dizi maddenin ağırlık başına düşen ısı kapasitesini, maddelerin tahmini göreceli atom ağırlıkları ile çarptıktan sona sabit bir derece yakın buldu. Bu atom ağırlıkları kısa süre öncesinde Dalton tarafında öne sürülmüştü. Modern anlamda, Dulong ve Petit, herhangi bir katı maddenin bir mol ısı kapasitesini ‘3R’olarak buldu. Burada ‘R’ evrensel gaz sabiti olarak ifade edilmektedir. Dulong ve Petit, buldukları ısı kapasitesinin R sabiti ile ilişkili olduğundan habersizdi, çünkü bu sabit, gazların kinetik teorisinden sonra tanımlanmıştı. 3R değeri yaklaşık olarak, Kelvin başına 25 Joul’dür. Aslında, Dulong ve Petit, kristallerin, bir mol atom başına düşen ısı kapasitesini bulmuştu.

Lamb kayması, adını Willis Lamb'den alan, hidrojen atomunun kuantum elektrodinamiğindeki 2S1/2 ve 2P1/2 enerji düzeyleri arasındaki küçük farklılıktır. Dirac denklemine göre, 2S1/2 ve 2P1/2 orbitalleri (yörüngeleri) aynı enerjiye sahip olmalıdır. Ancak, boşluktaki elektronlar arasındaki etkileşim, 2S1/2 ve 2P1/2 enerji düzeylerinde küçük bir enerji değişimine sebep olur. Lamb ve Robert Retherford bu değişimi 1947'de ölçmüşlerdir ve bu ölçüm, ıraksamayı açıklamak için tekrar normalleştirme teorisine teşvik edici bir unsur olmuştur. Bu, Julian Schwinger, Richard Feynman, Ernst Stueckelberg ve Sin-Itiro Tomonaga tarafından geliştirilmiş modern kuantum elektrodinamiğinin müjdecisiydi. Lamb, 1955 yılında Lamb kayması ile ilgili keşiflerinden ötürü Nobel Fizik Ödülü'nü kazandı.

<span class="mw-page-title-main">Spektral yoğunluk</span>

Güç spektrumunun zaman serileri bu sinyale sebep olan frekans bileşenlerinin dağılımını tanımlar. Fourier analizine göre herhangi bir fiziksel sinyal, farklı frekanslara ayrışabilir ya da devamlı bir sıra boyunca frekans spektrumlarına dönüşebilir. Belirli bir sinyal veya herhangi bir sinyal çeşitlerinin istatistiksel ortalaması içerdiği frekans bileşenlerine göre analiz edilir.Buna da spektrum denir.

<span class="mw-page-title-main">Doğrusal olmayan optik</span>

Doğrusal olmayan optik ya da nonlineer optik, ışığın doğrusal olmayan sistem ve malzemelerdeki davranışı ile özelliklerini inceleyen optiğin bir alt dalıdır. Bu malzemelerde elektrik alan () ile polarizasyon yoğunluğu () arasındaki ilişki doğrusal değildir; bu durum daha çok yüksek genlikte (108 V/m seviyelerinde) ışık veren lazerlerde ve lityum niobat gibi kristal yapılarında görülür. Schwinger sınırından daha kuvvetli alanlarda vakum da doğrusallığını kaybeder. Süperpozisyon prensibi bu malzemeler için geçerli değildir.

Möbius fonksiyonu , 1832 yılında Alman matematikçi August Ferdinand Möbius tarafından ortaya atılan çarpımsal bir fonksiyondur. Temel ve analitik sayılar teorisi'nde çoğunlukla kullanılan fonksiyon, genellikle Möbius inversiyon formülü'nün bir parçası olarak görülür. Gian-Carlo Rota'nın 1960'lı yıllardaki çalışmaları sonucunda ile gösterilen Möbius fonksiyonunun genellemeleri kombinatoriğe tanıtılmıştır.