İçeriğe atla

Dik açı

Dik açı 90 dereceye eşittir.
Bir doğru () ile dik açılar oluşturacak şekilde çizilmiş / kesişmiş bir diğer doğru parçası ().

Geometri ve trigonometride, bir dik açı,[1] bir çeyrek dönüşe[2] tam olarak 90° (derece) bir açıdır.[3] Bir ışın, uç noktası bir doğru üzerinde olacak şekilde yerleştirilirse ve bitişik açılar eşitse, o zaman bunlar dik açılardır.[4] Terim, Latince angulus rectus’tan öykünmedir; burada rectus, yatay bir taban çizgisine düşey olan dikey manasında "dik (direk)" anlamına gelir.

Dik açı modern mimaride en çok kullanılan açıdır.[]

Yakından ilgili ve önemli geometrik kavramlar dik kesişim alanına ve dik açı oluşturacak doğruları, yani doğru diklik (ortagonal) genellikle vektörlere uygulanan dik açı oluşturan bir özelliktir. Bir üçgende dik açının varlığı, dik üçgenler[5] için belirleyici faktördür, bu da dik açıyı trigonometri için temel yapar.

Etimoloji

"Dik açı"daki "dik" kelimesinin anlamı, muhtemelen dikili (erect), düz (straight), dikey (upright) veya dik (perpendicular) olarak tercüme edilebilen latin sıfat rectusa atıfta bulunur. Bir Yunan eşdeğer, düz (straight) ya da dik (perpendicular) anlamına gelen orthos (bakınız diklik, ortogonal)'dur.

Temel geometride

Bir dikdörtgen, dört dik açıya sahip bir dörtgendir. Bir kare, eşit uzunluktaki kenarlara ek olarak dört dik açıya sahiptir.

Pisagor teoremi, bir üçgenin ne zaman dik üçgen olduğunun nasıl belirleneceğini ifade eder.

Semboller

Dik açısı küçük bir kare ile gösterilen dik üçgen.
Bir açı eğrisi ve küçük bir nokta kullanarak bir dik açıyı şematik olarak göstermenin başka bir seçeneği.

Unicode'da, bir dik açı için sembol, U+221F RIGHT ANGLE (HTML ∟⧼dot-separator⧽ )'dir. Benzer şekle sahip olan U+231E BOTTOM LEFT CORNER (HTML ⌞⧼dot-separator⧽ ) sembolu ile karıştırılmamalıdır. İlişkili semboller U+22BE RIGHT ANGLE WITH ARC (HTML ⊾⧼dot-separator⧽ ), U+299C RIGHT ANGLE VARIANT WITH SQUARE (HTML ⦜⧼dot-separator⧽ ), and U+299D MEASURED RIGHT ANGLE WITH DOT (HTML ⦝⧼dot-separator⧽ )'dir.[6]

Diyagramlarda, bir açının dik açı olduğu gerçeği, bir dik üçgenin diyagramında görüldüğü gibi, genellikle diyagramdaki açıyla bir kare oluşturan sağa doğru küçük bir dik açı eklenerek ifade edilir (İngiliz İngilizcesinde, dik açılı üçgen). Ölçülen açı sembolü, noktalı bir yay, Almanca konuşulan ülkeler ve Polonya dahil olmak üzere bazı Avrupa ülkelerinde dik açı için alternatif bir sembol olarak kullanılır.[7]

Öklid

Öklid'in Elementlerinde dik açılar temeldir. Dik doğruları da tanımlayan Kitap 1, tanım 10'da tanımlanmıştır. Tanım 10, sayısal derece ölçümlerini kullanmaz, bunun yerine dik açının ne olduğunun tam kalbine, yani iki eşit ve bitişik açı oluşturmak için kesişen iki düz çizgiye dokunur.[8] Dik açı oluşturan düz doğrulara dik denir.[8] Öklid, keskin açıları (dik açıdan küçük olanlar) ve geniş açıları (dik açıdan büyük olanlar) tanımlamak için 11 ve 12 numaralı tanımlarda dik açıları kullanır.[8] Toplamları dik açı ise iki açı, tamamlayıcı olarak adlandırılır.[9]

Kitap 1 Önerme 4, tüm dik açıların eşit olduğunu belirtir, bu da Öklid'in diğer açıları ölçmek için bir birim olarak dik açıyı kullanmasına izin verir. Öklid'in yorumcusu Proclus, önceki önermeleri kullanarak bu önermenin bir ispatını verdi, ancak bu ispatın bazı gizli varsayımları kullandığı tartışılabilir. Saccheri de bir kanıt verdi, ancak daha açık bir varsayım kullanıyordu. Hilbert'in geometri aksiyomatizasyonunda bu ifade bir teorem olarak verilir, ancak çok fazla temel çalışmadan sonra verilir. Öklid'in malzemesini sunma sırasına göre, 4 numaralı önerme öncekilerden ispatlanabilse bile, bunu dahil etmenin gerekli olduğu ileri sürülebilir, çünkü o olmadan, dik açıyı bir ölçü birimi olarak kullanan 5. önerme, hiçbir anlam ifade etmez.[10]

Diğer birimlere dönüştürme

Bir dik açı farklı birimlerle ifade edilebilir:

  • 1/4 dönüş (devir)
  • 90° (derece)
  • π/2 radyan veya τ/4 rad
  • 100 grad (grade, gradian veya gon olarak da adlandırılır)
  • 8 nokta (32 noktalı pusula gülünden)
  • 6 saat (astronomik saat açısı)

3-4-5 kuralı

Tarih boyunca, marangozlar ve duvarcılar bir açının gerçek bir "dik açı" olup olmadığını doğrulamanın hızlı bir yolunu biliyorlardı. Bu, en çok bilinen Pisagor üçlüsü (3, 4, 5)'e dayanır ve "3-4-5 kuralı" olarak adlandırılır. Söz konusu açıdan, bir taraf boyunca tam olarak 3 birim uzunluğunda ve ikinci taraf boyunca tam olarak 4 birim uzunluğunda düz bir çizgi geçmek, bir hipotenüs (ölçülen iki uç noktayı birleştiren dik açının karşısındaki daha uzun çizgi) tam olarak 5 birim uzunluğundadır. Bu ölçüm hızlı ve teknik aletler olmadan yapılabilir. Ölçümün arkasındaki geometrik yasa Pisagor teoremidir ("Bir dik üçgenin hipotenüsünün karesi, bitişik iki kenarın karelerinin toplamına eşittir").

Thales teoremi

noktasından yarı doğrusuna dikmenin oluşturulması (sadece son noktasında geçerli değildir, serbestçe seçilebilir), sonunda 10 s duraklamalı animasyon
yarı doğru dışında ve ile mesafesi küçükse ( serbestçe seçilebilir), alternatif yapı,
sonunda 10 sn duraklamalı animasyon

Thales teoremi, bir yarım çember içine çizilmiş bir açının (yarım çember üzerinde bir tepe noktası ve yarım çemberin uç noktalarından geçen tanımlayıcı ışınları ile) bir dik açı olduğunu belirtir.

Dik açı ve Thales teoreminin dahil edildiği iki uygulama örneği için animasyonlara bakınız.

Ayrıca bakınız

Notlar

  1. ^ Dikaçı şeklinde bileşik olarak da yazılır. Bkz. "Türkçe Sözlük". Dil Derneği. 16 Mart 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Ağustos 2011. 
  2. ^ "Right Angle". Math Open Reference. 30 Ekim 2006 tarihinde kaynağından arşivlendi. Erişim tarihi: 26 Nisan 2017. 
  3. ^ Wentworth s. 11
  4. ^ Wentworth s. 8
  5. ^ Wentworth s. 40
  6. ^ Unicode 5.2 Karakter Kodu Çizelgeleri Matematiksel Operatörler 12 Haziran 2018 tarihinde Wayback Machine sitesinde arşivlendi., Çeşitli Matematiksel Semboller-B 12 Kasım 2018 tarihinde Wayback Machine sitesinde arşivlendi.
  7. ^ Susanne Müller-Philipp & Hans-Joachim Gorski (2011). Leitfaden Geometrie [Geometry Handbook] (Almanca). Springer. ISBN 9783834886163. 9 Ocak 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 8 Nisan 2021. 
  8. ^ a b c Heath s. 181
  9. ^ Wentworth s. 9
  10. ^ Paragraf için bkz. Heath ss. 200-201

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Pisagor teoremi</span> Öklid geometrisinde bir dik üçgenin üç kenarı arasındaki bağıntı

Pisagor teoremi veya Pisagor bağıntısı, Öklid geometrisinde üçgenin kenarları arasındaki temel ilişkiyi kuran ilk teoremlerden biridir. Teoreme gerçek hayattan örnek olarak telli çalgıları gösterilebilir; 'telin uzunluğu arttıkça titreşim artar' prensibine dayanır. Pisagor'un denklemi olarak da isimlendirilen bu teorem, a, b ve c kenarlarının arasındaki ilişkiyi şu şekilde açıklar:

<span class="mw-page-title-main">Üçgen</span> üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimi

Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.

<span class="mw-page-title-main">Dik üçgen</span>

Dik üçgen, iç açılarından biri 90° olan üçgendir. Çemberde çapı gören çevre açı 90°'dir.

<span class="mw-page-title-main">Öklid geometrisi</span> Öklide atfedilen matematiksel-geometrik sistem

Öklid geometrisi, İskenderiyeli Yunan matematikçi Öklid’e atfedilen matematiksel bir sistemdir ve onun Elemanlar adlı geometri üzerine ders kitabında tarif edilmektedir. Öklid'in yöntemi, sezgisel olarak çekici küçük bir aksiyom seti varsaymaktan ve bu aksiyomlara dayanarak birçok başka önermeyi (teoremleri) çıkarmaktan ibarettir. Öklid'in sonuçlarının çoğu daha önceki matematikçiler tarafından ifade edilmiş olsa da, Öklid, bu önermelerin kapsamlı bir tümdengelimli ve mantıksal sisteme nasıl uyabileceğini gösteren ilk kişi oldu. Elemanlar, ilk aksiyomatik sistem ve resmi ispatın ilk örnekleri olarak ortaokulda (lise) hala öğretilen düzlem geometrisi ile başlar. Üç boyutlu katı geometrisi ile devam ediyor. Elemanlar’ın çoğu, geometrik dilde açıklanan, şimdi cebir ve sayı teorisi olarak adlandırılan şeyin sonuçlarını belirtir.

<span class="mw-page-title-main">Öklid</span> Yunan matematikçi, aksiyomatik geometrinin mucidi

Öklid (Grekçe: Εὐκλείδης Eukleídēs; MÖ 330 - 275 yılları arasında yaşamış, İskenderiyeli bir matematikçidir. Megaralı Öklid'den ayırmak için bazen İskenderiyeli Öklid olarak anılır, genellikle "geometrinin kurucusu" veya "geometrinin babası" olarak anılan bir Yunan matematikçiydi. Ptolemy I döneminde İskenderiye'de aktifti. Elemanlar, yayınlandığı zamandan 19. yüzyılın sonlarına veya 20. yüzyılın başlarına kadar matematik öğretimi için ana ders kitabı olarak hizmet veren, matematik tarihindeki en etkili çalışmalardan biridir. Elemanlar’da, Öklid, küçük bir aksiyom setinden, şimdi Öklid geometrisi olarak adlandırılan şeyin teoremlerini çıkardı. Öklid ayrıca perspektif, konik kesitler, küresel geometri, sayı teorisi ve matematiksel kesinlik üzerine eserler yazdı.

<span class="mw-page-title-main">Trigonometri tarihi</span>

Üçgenlerle ilgili erken çalışmalar, Mısır matematiği ve Babil matematiğinde MÖ 2. binyıla kadar izlenebilir. Trigonometri, Kushite matematiğinde de yaygındı. Trigonometrik fonksiyonların sistematik çalışması Helenistik matematikte başladı ve Helenistik astronominin bir parçası olarak Hindistan'a ulaştı. Hint astronomisinde trigonometrik fonksiyonların incelenmesi, özellikle sinüs fonksiyonunu keşfeden Aryabhata nedeniyle Gupta döneminde gelişti. Orta Çağ boyunca, trigonometri çalışmaları İslam matematiğinde El-Hârizmî ve Ebu'l-Vefâ el-Bûzcânî gibi matematikçiler tarafından sürdürüldü. Altı trigonometrik fonksiyonun da bilindiği İslam dünyasında trigonometri bağımsız bir disiplin haline geldi. Arapça ve Yunanca metinlerin tercümeleri trigonometrinin Latin Batı'da Regiomontanus ile birlikte Rönesans'tan itibaren bir konu olarak benimsenmesine yol açtı. Modern trigonometrinin gelişimi, 17. yüzyıl matematiği ile başlayan ve Leonhard Euler (1748) ile modern biçimine ulaşan Batı Aydınlanma Çağı boyunca değişti.

<span class="mw-page-title-main">Dik kenar</span>

Dik kenar, dik üçgenin dik açısına komşu olan kenarlarına denir. Trigonometride dik kenarların birbirine ya da hipotenüse oranlarından faydalanılır. Bir dik kenarın uzunluğu, hipotenüs ile hipotenüse ait uzunluğun ayırdığı iki parçadan istenen dik kenara yakın olanın geometrik ortalaması alınarak bulunabilir. Pisagor teoremine göre dik kenarların uzunluklarının karelerinin toplamı hipotenüsün uzunluğunun karesine eşittir. komsusu oldugu kenarlardan en az bir tanesi ile arasında 90 derece açı bulunan kenar. Zîra kenar olan doğru parçaları açılara tek başlarına değil komşusu oldukları kenarlar ile birlikte sahip olurlar.

<span class="mw-page-title-main">Thales teoremi (çember)</span>

Çemberlerde Thales teoremi, alınan A, B ve C noktalarının bir çember üzerinde ve AC doğrusunun bu çemberin çapı olması durumunda, ABC açısının dik açı olacağını belirten geometri teoremi. Thales teoremi çevre açı kurallarının özel bir hâlidir. Adını Thales'ten alan teorem, genellikle ona atfedilir ancak bazı yerlerde Pisagor'la da ilişkilendirilir.

<span class="mw-page-title-main">Tümler açılar</span>

Tümler açılar, toplamlarının ölçüsü 90° olan açıları ifade eden geometri terimi. Eğer birbirinin tümleri iki açı komşu, köşeleri ve sadece bir kolları ortak ise dış kolları dik açı oluşturur.

<span class="mw-page-title-main">Dik</span>

Geometride, iki doğru veya iki düzlem kesiştiklerinde oluşturdukları komşu açılar birbirine eşitse dik olarak kabul edilir.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<i>Öklidin Elementleri</i> Öklidin matematik hakkındaki bir incelemesi

Öklid'in Elementleri İskenderiye'li Antik Yunan Öklid'e atfedilmiş 13 geometri kitabı bütünüdür. Öklid'in Elementler'i, tanımlar, aksiyomlar, önermeler ve bu önermelerin ispatlarından oluşur. Konuları iki ve üç boyutlu şekillerde öklidyen geometri, sayı teorisini, perspektif, konik kesitler, küresel geometri ve kuadrik yüzeyleri içerir. En eski geniş çaplı matematiksel tez olan Elementler hala ders kitabı olarak kullanılmaktadır. Kitapta kullanılan aksiyomatik yöntem birçok filozof ve matematikçiyi etkilemiştir.

Sakız Adalı Oenopides, MÖ 450 civarında yaşamış eski bir Yunan geometrici ve astronom.

<span class="mw-page-title-main">Açıortay teoremi</span> Bir üçgeni bölen iki parçanın göreli uzunlukları hakkında

Geometride açıortay teoremi, bir üçgenin kenarının karşı açıyı ikiye bölen bir çizgiyle bölündüğü iki parçanın göreli uzunluklarıyla ilgilidir. Göreli uzunluklarını, üçgenin diğer iki kenarının göreli uzunluklarına eşitler.

Dış açı teoremi, bir üçgenin bir dış açısının ölçüsünün, uzak iç açılarının ölçülerinden daha büyük olduğunu belirten Ökllid'in Elemanlar'ı Önerme 1.16'dır. Bu, mutlak geometride temel bir sonuçtur çünkü ispatı paralellik postülatına bağlı değildir.

Trigonometri, üçgenlerdeki kenarlar ve açılar arasındaki ilişkileri inceleyen bir matematik dalıdır. Trigonometri, bu ilişkileri tanımlayan ve dalgalar gibi döngüsel fenomenlere uygulanabilirliği olan trigonometrik fonksiyonları tanımlar.

<span class="mw-page-title-main">Geometrik ortalama teoremi</span> Dik üçgenler hakkında bir teorem

Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.

<span class="mw-page-title-main">Çevre açı</span>

Geometride, çevre açı, çember üzerinde iki sekant (kesen) çizgisi kesiştiğinde bir çember üzerinde oluşan açıdır. Çember üzerindeki bir nokta ile çember üzerinde verilen diğer iki noktanın oluşturduğu açı olarak da tanımlanabilir.

<span class="mw-page-title-main">Genelleştirilmiş trigonometri</span> Öklid düzlemi dışındaki diğer uzaylarda üçgenlerin incelenmesi

Sıradan trigonometri, Öklid düzlemi içindeki üçgenleri inceler. Gerçel sayılar üzerindeki sıradan Öklid geometrik trigonometrik fonksiyonları tanımlamanın birkaç yolu vardır, örneğin dik açılı üçgen tanımları, birim daire tanımları, seri tanımları, diferansiyel denklemler yoluyla tanımlar ve fonksiyonel denklemler kullanılarak tanımlar. Trigonometrik fonksiyonların genellemeleri, genellikle yukarıdaki yöntemlerden biriyle başlayıp Öklid geometrisinin gerçek sayıları dışındaki bir duruma uyarlanarak geliştirilir. Genel olarak trigonometri, her türlü geometri veya uzay içindeki nokta üçlülerinin incelenmesi olabilir. Bir üçgen en az sayıda köşeye sahip çokgendir, bu nedenle genelleştirmenin bir yönü açı ve çokgenlerin daha yüksek boyutlu analoglarını incelemektir: katı açılar ile tetrahedronlar ve n-simplices gibi politoplar.

Bu üçgen konuları listesi, geometriciler tarafından incelenen idealleştirmelerde veya Pascal üçgeni veya üçgen matrisler gibi üçgensel dizilerde olduğu gibi soyut olarak veya fiziksel uzayda somut olarak geometrik şekille ilgili şeyleri içerir. Kelimenin geometrik şekle atıfta bulunmadığı aşk üçgeni gibi metaforları içermez.