İçeriğe atla

Dijital İmza Algoritması

yunanca olarak kullanılan bu parametre, fonksiyonların seçimiyle beraber fonksiyonun çıktısı anahtar ikilisinin boyutuna kısaltılabilir.

Dijital İmza Algoritması dijital imza için bir FIPS standardıdır. Ağustos 1991'de National Institute of Standards and Technology (NIST) tarafından tasarlanmıştır. Dijital imza algoritması, ElGamal İmza Algoritması'nın bir varyantıdır.

Anahtar oluşturma

Anahtar oluşturma iki aşamadan oluşur. İlk aşama sistemdeki farklı kullanıcılar arasında paylaşılabilen "algoritma parametreleri”nin seçimiyken ikinci aşama tek bir kullanıcı için açık ve gizli anahtarların hesaplanmasıdır.

Parametre oluşturma

  • Onaylı bir kriptografik özet fonksiyon olan H'yi seç. H olarak SHA-1 kullanılırdı, fakat şu anki DSS'de SHA-1'den daha güçlü olan SHA-2 kullanılmaktadır. Özet fonksiyonun çıktısı anahtar ikilisinin boyutuna kısaltılabilir.
  • Anahtar uzunluğu L ve N nin belirlenmesi. Bu, anahtarın kriptografik gücünün belirlenmesinin en önemli ölçütüdür. Orijinal Dijital İmza Standardı L'nin değerini 512 ile 1024'ün arasında 64'ün katı olarak kısıtlamıştır.
  • N-bit uzunluğunda asal bir q' değeri seç. Nnin uzunluğu özet fonksiyonun çıktı değerinden kısa ya da eşit olmalıdır.
  • p–1, q nun katı olacak şekilde L -bit uzunluğunda asal p modülüsünü seç.
  • Çarpımsal mertebesi modulo p de q olan bir g değeri seç. Bu rastgele bir h (1 < h < p−1) değeri için g = h(p–1)/q mod p ile yapılabilir. Eğer sonuç 1 olarak gelirse farklı h değerleri için dene. hnin çoğu değeri g' olarak kullanılabilir; daha çok h=2 kullanılmaktadır.

Algoritma parametreleri olan (p, q, g) sistemdeki farklı kullanıcılar arasında paylaşılabilir.

Kullanıcı anahtarları

Parametre seti verildiğinde, ikinci aşamada tek bir kullanıcı için gizli ve açık anahtarlar üretilir:

  • Rassal olarak 0 < x < q olacak şekilde birx seç .
  • y = gx mod p değerini hesapla.
  • Açık anahtar (p, q, g, y). Özel anahtar x.

h(p–1)/q mod p ve gx mod p, modüler üslerini almak için etkili algoritmalar mevcuttur( Exponentiation by squaring gibi).

İmzalama

H bir özet fonksiyon ve m mesaj olsun :

  • 0 < k < q olacak şekilde her bir mesaj için rassal bir k değeri üret.
  • r = (gk mod p) mod q değerini hesapla.
  • r = 0, ise farklı rassal bir k değeri ile tekrar baştan başla
  • s = (k−1(H(m) + xr)) mod q değerini hesapla
  • Eğer s = 0, ise farklı rassal bir k değeri ile tekrar baştan başla.
  • İmza (rs)

İlk iki adım kullanıcı anahtarı oluşturmaya yarar. İmzalama işleminde hesaplaması en maliyetli kısım modüler üs alma işlemidir. 'k'nın modüler tersinin hesaplanması −1 mod q ikinci en maliyetli kısımdır. Genişletilmiş Öklid Algoritması ya da Fermat'nın son teoremi kq−2 mod q kullanılarak hesaplanabilir.

Doğrulama

  • Eğer 0 < r < q ya da 0 < s < q sağlanmazsa imzayı reddet.
  • w = s−1 mod q değerini hesapla.
  • u1 = H(m)•w mod q değerini hesapla.
  • u2 = rw mod q değerini hesapla.
  • v = ((gu1yu2) mod p) mod q değerini hesapla
  • Eğer v = r ise imza kabul edilir.

Algoritmanın doğruluğu

Eğer doğrulayıcı gerçek imzaları her zaman kabul ediyorsa imza şeması doğrudur. Algoritmanın doğruluğu şu şekilde ispatlanabilir:

İlk olarak, eğer g g = h(p − 1)/q mod p ise Fermat'nın son teoremi ile gqhp − 1 ≡ 1 (mod p) ‘dir. g > 1 ve q asal olduğundan, gnin mertebesi  qdur.

İmzalayan kişi

değerini hesaplar.

Böylece

gnin mertebesi q (mod p) q olduğundan

Sonuç olarak, Dijital İmza Algoritmasının doğruluğu aşağıdaki gibi hesaplanarak çıkar.

Duyarlılık

Dijital İmza Algoritmasında k rassal imza değerinin entropisi, gizliliği ve tek olması önemlidir. Bunlardan birinin olmaması halinde saldıran gizli anahtarı açığa çıkartabilir. Aynı değer iki kez kullanılırsa (kyı gizli tutsa bile), tahmin edilebilir bir değer kullanılarak ya da birkaç imzadaki k nın bazı bitleri sızdırılarak Dijital İmza Algoritması kırılabilir.

Ayrıca bakınız

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Latin alfabesi</span> Latin dilini yazmak için kullanılan alfabe

Latin alfabesi, antik Roma tarafından Eski Latince yazmak için kullanılan Latin harfleri tabanlı alfabedir. 23 harften oluşan Latin alfabesi, Latin harflerini kullanan ilk alfabedir.

RSA, güvenliği tam sayıları çarpanlarına ayırmanın algoritmik zorluğuna dayanan bir tür açık anahtarlı şifreleme yöntemidir. 1978’de Ron Rivest, Adi Shamir ve Leonard Adleman tarafından bulunmuştur. Bir RSA kullanıcısı iki büyük asal sayının çarpımını üretir ve seçtiği diğer bir değerle birlikte ortak anahtar olarak ilan eder. Seçilen asal çarpanları ise saklar. Ortak anahtarı kullanan biri herhangi bir mesajı şifreleyebilir, ancak şu anki yöntemlerle eğer ortak anahtar yeterince büyükse sadece asal çarpanları bilen kişi bu mesajı çözebilir. RSA şifrelemeyi kırmanın çarpanlara ayırma problemini kırmak kadar zor olup olmadığı hala kesinleşmemiş bir problemdir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Geometrik dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:

ElGamal şifrelemesi, Diffie-Hellman anahtar alış-verişi'ne dayanan bir asimetrik şifreleme algoritması olup Taher Elgamal tarafından 1984 yılında önerilmiştir.

<span class="mw-page-title-main">Almanya'daki şehirler listesi</span> Vikimedya liste maddesi

Almanya'daki şehirler listesi, 1 Ocak 2017 itibarıyla Almanya'da bulunan 2060 şehir ve ilçenin alfabetik olarak sıralanmış bir listesidir.

ElGamal imza şeması Ayrık Logaritmanın hesaplanmasının zorluğuna dayanan bir dijital imzadır. Tahir el-Cemal tarafından 1984 yılında bulunmuştur. Açık anahtarlı kriptosistemi ve imza şeması ayrık logaritmaya dayanmaktadır.

Rabin şifreleme sistemi, Rabin kriptoloji veya Rabin kriptosistemi, güvenliği RSA'daki gibi tam sayı çarpanlarına ayırmanın zorluğu üzerine kurgulanmış olan asimetrik bir kriptografik tekniktir. Bununla birlikte, Rabin kriptosisteminin avantajı, saldırgan tam sayıları verimli bir şekilde çarpanlarına ayıramadığı sürece, seçilmiş bir düz metin saldırısına karşı hesaplama açısından güvenli olduğu matematiksel olarak kanıtlanmıştır, oysa RSA için bilinen böyle bir kanıt yoktur. Rabin fonksiyonunun her çıktısının dört olası girdiden herhangi biri tarafından üretilebilmesi dezavantajı; her çıktı bir şifreli metinse, olası dört girdiden hangisinin gerçek düz metin olduğunu belirlemek için şifre çözmede ekstra karmaşıklık gerekir.

Paillier şifrelemesi , 1999’da Pascal Paillier tarafından geliştirilen olasılıksal açık anahtarlı şifreleme yöntemidir. n’inci kök sınıflarını hesaplamanın zorluğunu kullanan Paillier şifreleme sistemi, kararsal bileşik kök sınıfı varsayımı üzerine kurulmuştur. Sistem, toplama işlemine göre homomorfik özellik gösterir; yani sadece açık anahtarı, ve ’nin şifrelemesini kullanarak ’nin şifrelenmiş hâli hesaplanabilir.

Blum–Goldwasser Kriptosistem veya Blum-Goldwasser şifreleme sistemidir. 1984 yılında Manuel Blum ve Şafi Goldwasser tarafından önerilen bir asimetrik anahtar şifreleme algoritmasıdır. Bulum-Goldwasser bilinen en verimli kripto sistemlerden biridir. RSA ile hız ve mesaj genişlemesi açısından kıyaslanabilir. Bu şifreleme algoritmasında rastgele sayı üretmek için Blum Blum Shub rastgele sayı üretme algoritması kullanılır. Büyük sayıların asal çarpanlarına ayrılma probleminin çözülemezliği kabulüne dayanan bir şifreleme algoritmasıdır.

Goldwasser–Micali (GM) kriptosistemi 1982 yılında Shafi Goldwasser ve Silvio Micali tarafından geliştirilmiş bir asimetrik anahtar şifreleme algoritmasıdır. GM standart kriptografik varsayımlar altında güvenliği kanıtlanmış ilk probabilistik açık anahtar şifreleme yöntemidir. Bununla birlikte başlangıç düz metinden yüzlerce kez daha geniş olan şifreli metinler olduğundan verimli bir kriptosistem değildir. Kriptosistemin güvenlik özelliğini kanıtlamak için Shafi Goldwasser ve Silvio Micali anlamsal güvenliğin geniş alanda kullanılan bir tanımını önerdiler.

<span class="mw-page-title-main">Diffie-Hellman anahtar değişimi</span> dünyanın enyuksek dagı

Diffie-Hellman anahtar değişimi (D-H), kriptografik anahtarların değişiminde kullanılan özel bir yöntemdir. Bu kriptografi alanında uygulanan ilk pratik anahtar değişimi örneklerinden biridir. Diffie-Hellman anahtar değişimi metodu, güvenilmeyen bir sistem üzerinden iletişim kurmak isteyen karşılıklı iki tarafın ortaklaşa bir anahtar üzerinde karar kılabilmesine olanak sağlar. Böylece, iki tarafın da karar kıldığı bir simetrik anahtar, güvenli olmayan sistem üzerinden iletişimi şifrelemek için kullanılabilir. Diffie-Hellman protokolünde amaç, iletişim kurmak isteyen iki taraf arasındaki anahtar değişim prosedürünü, anahtarın kötü tarafların eline geçmediğine emin olacak şekilde güvenli bir şekilde gerçekleştirmektir. Bu işlem bir defa yapıldığında ve taraflar bir anahtar üzerinde ortaklaştığında her iki taraf da kendi mesajını paylaşılan anahtarla şifreleyebilir, böylece taraflar arasındaki iletişim güvenli bir şekilde sağlanmış olur.

Kriptografide Schnorr imzası, Schnorr imza algoritması tarafından üretilen dijital imzalamadır. Güvenliği, ayrık logaritma problemlerinin çözülemezliğine dayanır. Kısa imzalar oluşturur ve verimlidir. Rastgele oracle modelde en basit güvenliği kanıtlanmış dijital imzalama modeli olarak düşünüldü. 2008'de geçerliliğini yitiren U.S. Patent 4,995,082 tarafından lisanslanmıştır.

Merkle-Hellman kripto sistemi, 1978 yılında Martin Hellman ve Ralph Merkle tarafından geliştirilen ilk açık anahtarlı kriptosistemlerden biridir. RSA'dan daha hızlı gerçekleştirilebilmesine rağmen Adi Shamir tarafından 1982'de güvensiz olduğu gösterilmiştir.

<span class="mw-page-title-main">Eliptik eğri kriptografisi</span>

Eliptik Eğri Kriptolojisi, sonlu cisimler üzerindeki eliptik eğrilerin cebirsel topolojisine dayanan bir açık anahtar şifrelemesidir. Eliptik Eğri Kriptolojisi, diğer şifrelemeler göre daha küçük anahtar boyuna ihtiyaç duyar.

Kriptografi 'de bir 'Lamport imzası' veya 'Lamport bir defalık imza şeması' dijital imza oluşturmak için kullanılan bir yöntemdir. Lamport imzaları, kriptografik olarak güvenli herhangi bir tek yönlü fonksiyon ile oluşturulabilir; genellikle bir Kriptografik özet fonksiyonu kullanılır.

Merkle imzası, anahtarlama ağaçları ve sayısal imza şemalarını birleştiren bir veri doğrulama yapısıdır. Özet değeri tabanlı kriptografidir ve Merkle ağacı da denen özet değeri ağacını kullanmaktadır. Verileri Lampart imza algoritması gibi tek kullanımlık şekilde imzalar. Ralph Merkle tarafından 1970 sonu itibarıyla geliştirilmiştir ve RSA, Dijital İmza Algoritması gibi geleneksel dijital imzalara alternatif olmuştur.

Kriptografide Eliptik Eğri Dijital İmza Algoritması (ECDSA), eliptik eğri şifrelemesi kullanan birçok çeşit Dijital İmza Algoritması (DSA) sunar.

Benaloh kriptosistemi 1994 yılında Josh (Cohen) Benaloh tarafından oluşturulan Goldwasser-Micali şifreleme sisteminin bir genişletilmesidir. Goldwasser-Micali'de bitler tek tek şifrelenirken, Benaloh Kriptosisteminde veri blokları grup olarak şifrelenmektedir. Orijinal makaledeki küçük bir hata Laurent Fousse et al. 'da düzeltilmiştir.

Kriptografide klasik şifre, tarihsel olarak kullanılmış ancak çoğunlukla kullanımdan kalkmış bir şifre türüdür. Modern kriptografik algoritmaların aksine, klasik şifrelerin çoğu pratik olarak hesaplanabilir ve elle çözülebilir. Bununla birlikte, modern teknoloji ile kırılmaları da genellikle çok basittir. Bu terim Yunan ve Roma dönemlerinden beri kullanılan basit sistemleri, ayrıntılı Rönesans şifrelerini, Enigma makinesi gibi II. Dünya Savaşı kriptografisini ve sonrasını içerir.