İçeriğe atla

Diferansiyel denklem

Matematikte, diferansiyel denklem, bir ya da birden fazla fonksiyonu ve bunların türevlerini ilişkilendiren denklemdir.[1] Fizik, kimya, mühendislik, biyoloji ve ekonomi alanlarında matematiksel modeller genellikle diferansiyel denklemler kullanılarak ifade edilirler. Bu denklemlerde, fonksiyonlar genellikle fiziksel ya da finansal değerlere, fonksiyon türevleriyse değerlerin değişim hızlarına denk gelir.

Çeşitleri

Diferansiyel denklemler temel olarak iki kola ayrılırlar:

  1. Normal diferansiyel denklemler (veya adi diferansiyel denklemler)
  2. Kısmi diferansiyel denklemler .

Diferansiyel denklemler bilinmeyenlerin birbirleri ve katsayılarla ilgili konumlarına göre: Doğrusal diferansiyel denklemler, Doğrusal olmayan diferansiyel denklemler olarak da gruplanmaktadır. Doğrusal denklemlerin teorisi gelişmiş olmasına rağmen doğrusal olmayan denklemlerin keyfiyet analizi zordur ve bazen mümkün değildir. Bu durumlarda sayısal analiz teknikleri uygulanır.

Kısmi diferansiyel denklemler, katsayıların durumlarına ve zamana ait türevin mevcudiyetine göre

  1. Eliptik diferansiyel denklemler
  2. Parabolik diferansiyel denklemler
  3. Hiperbolik diferansiyel denklemler şeklinde alt gruplara ayrılırlar.

Son iki tip denklem, zamana ait türevin mevcudiyetinden ötürü evrimsel olarak isimlendirilir.

Modern uygulamaların zorlaması ile ortaya çıkan:

  1. Stokastik diferansiyel denklemler
  2. Gecikmeli diferansiyel denklemler

tiplerindeki denklemler yukardakilerden farklı olarak değerlendirilebilirler.

Sabit ortamlarda denklemler verilere göre:

  1. Başlangıç değer
  2. Sınır değer

şeklinde sınıflandırılırlar. Sabit olmayan bir ortamda tanımlı denklemlere Serbest sınır değer problemleri veya Hareketli sınır değer problemleri denir.

Birçok denklemden oluşan ilişkilere denklem sistemi adı verilir.

Diferansiyel Denklemlerin Tarihi

Diferansiyel denklemler, Isaac Newton ve Gottfried Leibniz'in Kalkülüs'ü ortaya atması ile başlar. Isaac Newton, 1671 yılında yayınlanan Methodus fluxionum et Serierum Infinitarum[2] isimli kitabının ikinci bölümünde üç tip diferansiyel denklem tanımlamıştır:

Tüm durumlarda , 'in bilinmeyen bir fonksiyonu (ya da ve 'nin) ve verilmiş bir fonksiyondur.

Isaac Newton bu ve diğer örnekleri kitabında Sonsuz seriler yöntemini kullanarak çözer ve çözümlerin yalnız bir tane olup olmadığını sorgular.

Jakob Bernouilli 1695 yılında Bernoulli diferansiyel denklemi'ni ortaya attı[3] ve bu denklem şu formda bir Adi diferansiyel denklemdir:

Sonraki yıllarda Gottfried Leibniz bu denklemin çözümünü, denklemi basitleştirerek bulmuştur.[4]

Isı denklemi çözülerek oluşturulan bir pompa gövdesindeki ısı transferinin görselleştirilmesi.

Isı gövdenin içinde üretilir ve sınırda soğutularak sabit durumlu bir sıcaklık dağılımı sağlanır.

Uygulamalar

Diferansiyel denklemlerin etüdü, soyut ve uygulamalı matematik, fizik ve mühendislikte geniş bir alandır. Bu bilim dallarınının tümü, çeşitli türlerdeki diferansiyel denklemlerin özellikleri ile ilgilidir.

Soyut matematik, çözümlerin varlığına ve benzersizliğine odaklanırken, uygulamalı matematik, çözümlere yaklaşım yöntemlerinin kesin gerekçesini vurgular.

Diferansiyel denklemler, göksel hareketten köprü tasarımına ve nöronlar arasındaki etkileşimlere kadar neredeyse her fiziksel, teknik veya biyolojik sürecin modellenmesinde önemli bir rol oynar.

Gerçek hayat problemlerini çözmek için kullanılanlar gibi diferansiyel denklemler, mutlaka doğrudan çözülebilir olmayabilir, yani kapalı biçimli çözümleri yoktur. Bunun yerine, çözümler sayısal yöntemler kullanılarak yaklaşık olarak bulunabilir.

Fizik ve kimya ile ilgili birçok temel yasa diferansiyel denklemlerle formülleştirilebilir. Biyoloji ve ekonomi'de karmaşık sistemlerin davranışını model için diferansiyel denklemler kullanılır.

Diferansiyel denklemlerin matematiksel teorisi, ilk olarak denklemlerin ortaya çıktığı ve sonuçların uygulama bulduğu bilimlerle birlikte gelişti. Ancak, bazen oldukça farklı bilimsel alanlardan kaynaklanan çeşitli problemler, aynı diferansiyel denklemlere yol açabilir. Bu olduğunda, denklemlerin arkasındaki matematiksel teori, çeşitli doğa olaylarının arkasındaki birleştirici bir ilke olarak görülebilir. Örneğin atmosferdeki ışık ve sesin ve bir havuz yüzeyinde dalgaların yayılmasını düşünün. Hepsi aynı ikinci dereceden kısmi diferansiyel denklem olan dalga denklemi ile tanımlanabilir, bu ise ışık ve sesin dalga şekillerini sudaki bilinen dalgalar gibi düşünmemizi sağlar. Teorisi Joseph Fourier tarafından geliştirilen ısı iletimi, başka bir ikinci dereceden kısmi diferansiyel denklem olan ısı denklemi ile ifade edilir. Görünüşe göre farklı görünen birçok difüzyon işleminin aynı denklemle tanımlandığı ortaya çıkmıştır örn. finanstaki Black–Scholes denklemi, ısı denklemi ile ilişkilidir.

Doğada ve teknolojide çok sayıda doğa olayı, diferansiyel denklemler ve bunlara dayalı matematiksel modeller ile tanımlanabilir. Bazı tipik örnekler şunlardır:

Diferansiyel denklemler alanı matematiğe belirleyici bir ivme kazandırdı. Güncel matematik araştırmalarının birçok bölümü farklı türdeki diferansiyel denklemlerin varlığı, tekliği ve kararlılık teorisi üzerinedir.

Yazılım

Maple:[6] dsolve

Xcas:[7] desolve(y'=k*y,y)

Dış bağlantılar

Vikikitap
Vikikitap
Vikikitapta bu konu hakkında daha fazla bilgi var:

Kaynakça

  1. ^ Dennis G. Zill (15 Mart 2012). A First Course in Differential Equations with Modeling Applications. Cengage Learning. ISBN 1-285-40110-7. 17 Ocak 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 27 Ağustos 2020. 
  2. ^ Newton, Isaac. (c.1671). Methodus Fluxionum et Serierum Infinitarum (The Method of Fluxions and Infinite Series), published in 1736 [Opuscula, 1744, Vol. I. p. 66].
  3. ^ Bernoulli, Jacob (1695), "Explicationes, Annotationes & Additiones ad ea, quae in Actis sup. de Curva Elastica, Isochrona Paracentrica, & Velaria, hinc inde memorata, & paratim controversa legundur; ubi de Linea mediarum directionum, alliisque novis", Acta Eruditorum
  4. ^ Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems, Berlin, New York: Springer-Verlag, ISBN 978-3-540-56670-0
  5. ^ Peterson, Ivars (2002). "Filling in Blanks". Science News. Society for Science &#38. 161 (19): 299-300. doi:10.2307/4013521. 27 Haziran 2009 tarihinde kaynağından arşivlendi. Erişim tarihi: 11 Mayıs 2008. 
  6. ^ "dsolve". 23 Kasım 2013 tarihinde kaynağından arşivlendi. 
  7. ^ "Symbolic algebra and Mathematics with Xcas" (PDF). 29 Temmuz 2014 tarihinde kaynağından arşivlendi (PDF). 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">Adi diferansiyel denklem</span>

Matematikte adi diferansiyel denklem, tek değişkenli fonksiyonların türevlerini ilişkilendiren diferansiyel denklem çeşididir. Adi diferansiyel denklemler adı daha yaygındır. Kapalı olarak şeklinde gösterilirler. Bu ifadede denklemin derecesini gosterir.

Schrödinger denklemi, bir kuantum sistemi hakkında bize her bilgiyi veren araç dalga fonksiyonu adında bir fonksiyondur. Dalga fonksiyonunun uzaya ve zamana bağlı değişimini gösteren denklemi ilk bulan Erwin Schrödinger’dir. Bu yüzden denklem Schrödinger denklemi adıyla anılır. 1900 yılında Max Planck'ın ortaya attığı "kuantum varsayımları"nın ardından, 1924'te ortaya atılan de Broglie varsayımı ve 1927'de ortaya atılan Heisenberg belirsizlik ilkesi bilim dünyasında yeni ufukların doğmasına sebep olmuştur. Bu gelişmeler Max Planck'ın kuantum varsayımları ve Schrödinger'in dalga mekaniği ile birleştirilerek kuantum mekaniğini ortaya çıkarmıştır.

<span class="mw-page-title-main">Dalga denklemi</span> kısmi diferansiyel bir denklem

Dalga denklemi fizikte çok önemli yere sahip bir kısmi diferansiyel denklemdir. Bu denklemin çözümlerinden, ses, ışık ve su dalgalarının hareketlerini betimleyen fiziksel nicelikler çıkar. Kullanım alanı, akustik, akışkanlar mekaniği ve elektromanyetikte oldukça fazladır. Genellikle elektromanyetik dalgalar gibi dalgalar için dalga denkleminin vektörel formülasyonu kullanılır. Bu formülasyonda elektrik alanları şeklindeki vektörlerle gösterebilir ve vektörün her bi bileşeni skaler dalga denklemine uymak zorundadır. Yani vektörel dalga denklemleri çözülürken her bir bileşen ayrı ayrı çözülür. Denklemin en basit hali aşağıdaki şekliyle gösterilir,

<span class="mw-page-title-main">Kalkülüs</span>

Başlangıçta sonsuz küçük hesap veya "sonsuz küçüklerin hesabı" olarak adlandırılan kalkülüs, geometrinin şekillerle çalışması ve cebirin aritmetik işlemlerin genellemelerinin incelenmesi gibi, kalkülüs sürekli değişimin matematiksel çalışmasıdır.

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Harmonik fonksiyon</span>

Matematiğin matematiksel fizik alanında ve rassal süreçler teorisinde bir harmonik fonksiyon, Rn'nin U gibi açık bir kümesi üzerinde f : UR şeklinde tanımlı, Laplace denklemini, yani

Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir. Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır. Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir. Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır. Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir.

Bessel fonksiyonları ilk önce Daniel Bernoulli tarafından tanımlanmış ve Friedrich Bessel tarafından genelleştirilmiş

<span class="mw-page-title-main">Sayısal analiz</span>

Sayısal analiz, diğer adıyla nümerik analiz veya sayısal çözümleme, matematiksel analiz problemlerinin yaklaşık çözümlerinde kullanılan algoritmaları inceler. Bu nedenle birçok mühendislik dalı ve doğa bilimlerinde önem arz eden sayısal analiz, bilimsel hesaplama bilimi olarak da kabul edilebilir. Bilgisayarın işlem kapasitesinin artması ile gündelik hayatta ortaya çıkan birçok sistemin matematiksel modellenmesi mümkün olmuş ve sayısal analiz algoritmaları burada ön plana çıkmıştır. 21. yüzyıldan itibaren bilimsel hesaplama yöntemleri mühendislik ve doğa bilimleri ile sınırlı kalmamış ve sosyal bilimler ile işletme gibi alanları da etkilemiştir. Sayısal analizin alt başlıklarına adi diferansiyel denklemlerin yaklaşık çözümleri ve özellikle veri biliminde önem taşıyan sayısal lineer cebir ile optimizasyon örnek gösterilebilir.

<span class="mw-page-title-main">Green fonksiyonları</span>

Green fonksiyonları, matematikte homojen olmayan diferansiyel denklemlerin, istenen sınır koşulları altında çözülmesinde kullanılan bir yöntemi ve bu yöntemle ilişkili olarak hesaplanan fonksiyonu belirtmekte kullanılır. İlk kez matematikçi George Green tarafından kullanılmıştır.

Matematiksel model, bir sistemin matematiksel kavramlar ve dil kullanılarak tanımlanmasıdır. Matematiksel model geliştirme süreci, matematiksel modelleme olarak adlandırılır. Matematiksel modeller, doğa bilimlerinde ve mühendislik disiplinlerinde bunun yanı sıra sosyal bilimlerde kullanılır. Matematiksel modelleri daha çok fizikçiler, mühendisler, istatistikçiler, operasyon araştırma analistleri ve ekonomistler kullanır. Model, bir sistemi açıklamaya, farklı bileşenlerin etkilerini incelemeye ve bir davranış hakkında öngörüde bulunmak için yardımcı olabilir.

Matematikte, Poisson denklemi elektrostatik, makine mühendisliği ve teorik fizik'de geniş kullanım alanına sahip eliptik türdeki Kısmi diferansiyel denklemlerdir. Fransız matematikçi, geometrici ve fizikçi olan Siméon Denis Poisson'dan sonra isimlendirilmiştir. Poisson denklemi

Bateman dönüşümü, matematiğin kısmi diferansiyel denklemler başlığında, üç karmaşık değişkenli holomorf bir fonksiyonunun çizgi integrali kullanılarak, dalga denkleminin üç ve Laplace denkleminin dört boyutta çözülmesi için bir yöntemdir. Adını, bu konudaki ilk yayını yapan İngiliz matematikçi Harry Bateman'den almıştır.

<span class="mw-page-title-main">Süperpozisyon prensibi (fizik)</span> Bir parçacık veya sistemin belli bir zamanda birden fazla durumda olabilmesi.

Fizikte ve sistem teorisinde, süperpozisyon prensibi, tüm lineer sistemler için bir veya daha fazla uyarılar tarafından oluşan net tepki olarak belirtilen süper pozisyon özelliği olarak da bilinir. Kuantum mekaniğinde iki dolanık parçanın durumuna da süperpoziyon denilir. Bu uyarılar her bir uyarıcı tarafından tek tek meydana gelen uyarıların toplamıdır. Eğer giriş A, X tepkisini üretirse ve giriş B, Y tepkisini üretirse, sonuç olarak giriş (A+B), (X+Y) tepkisini üretir. Homojenlik ve eklenebilirlik özellikleri birlikte süperpozisyon prensibi olarak adlandırılır. Bir lineer fonksiyon süperpozisyon prensibini sağlayanlardan biridir ve şöyle tanımlanır:

 Eklenebilirlik
  Homojenlik
skaler a için.
<span class="mw-page-title-main">Lagrange mekaniği</span> Klasik mekaniğin yeniden formüle edilmesi

Lagrange mekaniği, klasik mekaniğin yeniden formüle edilmesidir. İtalyan-Fransız matematikçi ve astronom Joseph-Louis Lagrange tarafından 1788’de geliştirilmiştir.

Tam diferansiyel denklem veya Sağın diferansiyel denklem fizikte ve mühendislikte sıklıkla kullanılan bir tür adi diferansiyel denklemdir.

<span class="mw-page-title-main">Sınır değer problemi</span>

Matematikte sınır değer problemleri, sınır koşulları ile verilen diferansiyel denklemlerdir. Bir sınır değer probleminin çözümü, verilen diferansiyel denklemin uygun sınır koşullarına uyum sağlayan çözümüdür.

Floquet teorisi, periyodik katsayılı doğrusal diferansiyel denklem sistemlerinin çözümü ile ilgilenen bir matematik alt dalıdır. Floquet teorisi,