İçeriğe atla

Devresel fotofosforilasyon

Devresel fotofosforilasyon, fotofosforilasyonda görülen aşamalardan biridir.

680 nm'den daha uzun dalga boyları ile ışıklandırlan kloroplastlar yalnızca PSI etkin duruma geçer ve sudan elektron sağlamaz. Bu durumda fotosentezin ışık reaksiyonları sırasında O2 oluşmamaktadır. H2O'dan ferrodoksine elektron akımı durumunda devresel olmayan fosforilasyon da durur ve karanlık reaksiyon evresinde CO2 asimilasyonu engellenir. PSI'in 680 nm uzun dalga boylu ışık kuantumu ile uyarılmasıyla elektronlar P700'den ferrodoksine geçemeden sitokromb6f ğzerinden plastokinona dönerler. Bu arada sitokromf ve plastokinon aracığıyla elektron yeniden P700'e geri döner. P700'den koparılarak tekrar P700 geri dönen bu devresel elektron taşınımı sırasında ATP sentesiz yapılması ise devresel fosforilasyon olarak adlandırılır. Devreel elektron taşınımı sırasında ATP sentez edilebilecek iki bölge vardır. Bunlardan biri P430 ile sitokromb6 arasında diğeri ise plastokinon ile sitokromf arasında fotosentezin ışık reaksiyonları evresinde ATP ve NADH+ oluşumu ile bitki artık CO2'i karbonhidrat biçimine indirgemeye hazır duruma gelmiştir.

İlgili Araştırma Makaleleri

Dalga-parçacık ikililiği teorisi tüm maddelerin yalnızca kütlesi olan bir parçacık değil aynı zamanda da enerji transferi yapan bir dalga olduğunu gösterir. Kuantum mekaniğinin temel konsepti, kuantum düzeyindeki objelerin davranışlarında ‘’parçaçık’’ ve ‘’dalga’’ gibi klasik konseptlerin yetersiz kalmasından dolayı bu teoriyi işaret eder. Standart kuantum yorumları bu paradoksu evrenin temel özelliği olarak açıklarken, alternatif yorumlar bu ikililiği gelişmekte olan, gözlemci üzerinde bulunan çeşitli sınırlamalardan dolayı kaynaklanan ikinci dereceden bir sonuç olarak açıklar. Bu yargı sıkça kullanılan, dalga-parçacık ikililiğinin tamamlayıcılık görüşüne hizmet ettiğini, birinin bu fenomeni bir veya başka bir yoldan görebileceğini ama ikisinin de aynı anda olamayacağını söyleyen Kopenhag yorumu ile açıklamayı hedefler.

<span class="mw-page-title-main">Fotosentez</span> bitki ve organizmalar tarafından ışık enerjisinin kimyasal enerjiye dönüştürülme işlemi

Fotosentez, bitkiler ve diğer canlılar tarafından, ışık enerjisini organizmaların yaşamsal eylemlerine enerji sağlamak için daha sonra serbest bırakılabilecek kimyasal enerjiye dönüştürmek için kullanılan bir işlemdir. Bu kimyasal enerji, karbondioksit ve sudan sentezlenen şekerler gibi karbonhidrat moleküllerinde depolanır.

<span class="mw-page-title-main">Kloroplast</span> Fotosentezi gerçekleştiren bitki organeli

Kloroplast, fotosentezin gerçekleştiği sitoplazmik organeldir. Bitkilerin sadece yeşil kısımlarında bulunur. Bitkide besin ve oksijen üretilmesini sağlar. Genellikle yeşil renkli olduğu için bitkilerin çoğunun yeşil renkli olmasının temel sebebidir. Güneş enerjisini moleküler bağlar halinde saklayabilen tek yapı kloroplastlardır ve senede bu yolla dünyada 200 milyar ton organik madde üretilmektedir. Fotosentez yapma yeteneği kazanmış bir çekirdeksiz ve organelsiz ilkin hücre ve heterotrof (adrıbeslek) canlıların içerisine girerek simbiyoz yaşama uymuş bu şekilde kloroplastları meydana getirmiştir. Yani mavi algler kloroplastların evrimsel olarak atasıdır.

<span class="mw-page-title-main">Glikoliz</span> katabolik yolak

Glikoliz, glikozun enzimlerle pirüvik asite (pirüvat) kadar yıkılması olayıdır. Bütün canlılarda glikoliz reaksiyonları aynı şekilde gerçekleşir çünkü olaylar için tüm canlılarda aynı enzimler görevlidir. Başlangıçta glikozu aktifleştirmek için 2 ATP harcanır. Reaksiyonlar sırasında 4 ATP(Adenozin tri fosfat) oluşturulur. 2 NADH meydana gelir. Oluşan NADH'lar oksijenli solunumda elektron taşıma sistemine aktarılır ve her birinden üçer ATP elde edilir. Oksijensiz solunumda ise NADH'lar son ürün evresinde tekrar yükseltgenerek bir sonraki glikoliz olayında kullanılır. Kısacası glikolizde substrat düzeyinde fosforilasyonla 4 ATP üretilir. Ve 2ATP harcandığı için net kazanç 2 ATP 'dir. Ancak oluşan 2NADH iyonundan dolaylı olarak 6 ATP(Adenozin tri fosfat)ETS'den kazanılır.

<span class="mw-page-title-main">Adenozin trifosfat</span> organik bileşi

'Adenozin trifosfat, hücre içinde bulunan çok işlevli bir nükleotittir. İngilizce Adenosine Triphosphateden ATP olarak kısaltılır. En önemli işlevi hücre içi biyokimyasal reaksiyonlar için gereken kimyasal enerjiyi taşımaktır. Fotosentez ve hücre solunumu sırasında oluşur. ATP bunun yanı sıra RNA sentezinde gereken dört monomerden biridir. Ayrıca ATP, hücre içi sinyal iletiminde protein kinaz reaksiyonu için gereken fosfatın kaynağıdır. 3 tane fosfattan oluşur.

Oksidatif fosforilasyon, canlılarda enerji kaynağı olarak kullanılan ATP sentezinde kullanılan yollardan biridir. Fosforilasyon olarak da adlandırılan ATP sentezi başlıca dört yoldan gerçekleştirilir.

<span class="mw-page-title-main">Joseph Alois Schumpeter</span> Avusturyalı ekonomist (1883 – 1950)

Joseph Alois Schumpeter, Avusturyalı iktisatçı ve siyaset bilimcidir. Çalışmaları ile siyasi iktisada önemli katkılarda bulunmuştur.

<span class="mw-page-title-main">Oksijenli solunum</span> Hücresel solunum

Oksijenli solunum, organik besinlerden oksijen yoluyla ATP elde etme işidir. Hücrelerdeki bazı kimyasal tepkimelerde kullanılan enerjinin oksijen kullanılarak açığa çıkarılması demektir. Biyoloji ders kitapları sık sık hücresel solunum sırasında glikoz molekülü başına 38 ATP molekülü üretildiğini söylese de sızıntılı zarların yanı sıra mitokondriyal matrikse pirüvat ve ADP hareketinin maliyetinden dolayı %100 verim olamayacağından bu sayıya asla ulaşılmaz, mevcut tahminler glikoz başına 29 ilâ 30 ATP dolayındadır.

<span class="mw-page-title-main">Floresans</span> ışığı soğuran bir madde tarafından ışığın yayılması

Floresans, soğuk cisimlerde moleküler fotonun yutulmasının daha uzun bir dalga boyunda diğer bir fotonun yayılmasını tetiklemesiyle gerçekleşen ışık verme (ışıma) olayıdır. Yutulan ve yayılan fotonlar arasındaki enerji farkı moleküler titreşimler ya da ısı olarak ortaya çıkar.

<span class="mw-page-title-main">Krebs döngüsü</span> Hücrelerde enerji açığa çıkarmak için kimyasal reaksiyonlar

Krebs döngüsü, trikarboksilik asit döngüsü veya sitrik asit döngüsü, canlı hücrelerin besinleri yükseltgeyerek enerji elde etmesini sağlayan ve bütün yaşam biçimlerinde önemli bir yer tutan kimyasal süreçlerin son aşamasıdır. TCA devri olarak da bilinir. 1937'de Hans Adolf Krebs tarafından açıklığa kavuşturulan tepkimelerin hayvan, bitki, mikroorganizma ve mantar gibi birçok hücre türünde oluştuğu saptanmıştır.

Emerson etkisi, 680 nm'den küçük ve büyük dalga boylu ışınların birlikte verilmesiyle meydana gelen fotosentetik verim artışına denir.

<span class="mw-page-title-main">Krassulasean asit metabolizması</span>

CAM veya Crassulaceae asit metabolizması bitkileri ya da CAM fotosentezi, bazı fotosentetik bitkilerde görülen karbon fiksasyonu yoludur.

Fotofosforilasyon Yaşayan canlılar sadece iki kaynaktan enerji elde edebilirler: güneş ışığı ve redoks tepkimeleri. Bütün canlılar yaşamları için gerekli değişmez ürün ATP'yi üretirler. Fosforilasyonda yüksek enerjili elektron vericisi ve düşük enerjili elektron alıcısı oluşturmak için ışık enerjisi kullanılır. Elektronlar spontan olarak vericiden alıcıya doğru elektron taşıma zinciriyle hareket ederler.

C<sub>4</sub> karbon tutulumu mekanizması

C4 karbon tutulumu mekanizması veya C4 bitkileri kara bitkilerinin fotosentezinde karbondioksiti bağlayan ve şeker oluşturan C3 karbon tutulumu mekanizması ve CAM bitkileri mekanizmaları gibi işleyen biyokimyasal mekanizmalardan biridir.

<span class="mw-page-title-main">Fotosolunum</span>

Fotorespirasyon ya da fotosolunum (Oksidatif fotosentetik karbon döngüsü veya C2 fotosentez olarak da bilinir) RuBP' nin RuBisCO enzimi tarafından oksitlendiği (oksijen ekleme-oksijenasyon) bir bitki metabolizması süreci. Bu süreçte fotosentez tarafından üretilen enerjinin bir kısmını israf edilir. Aslında arzu edilen reaksiyon, Calvin-Benson döngüsünün kilit bir basamağı olan RuBP'ye (karboksilasyon) karbon dioksit ilavesidir, ancak RuBisCO tarafından reaksiyonların yaklaşık %25'i bunun yerine RuBP'ye oksijen ekler (oksijenasyon) ve bu reaksiyonun sonucunda Calvin-Benson döngüsünde kullanılamayacak bir ürün (2-fosfoglikolat) oluşturur. Bu işlem, C3 bitkilerde fotosentez verimliliği azaltır. Fotorespirasyon, kloroplastlar, yaprak peroksizomları ve mitokondriler arasında metabolit alışverişinde bulunan karmaşık bir enzim reaksiyonları ağı içerir.

Işık gözün algıladığı elektromanyetik ışınıma verilen isimdir. Işık gücünün toplam elektromanyetik ışınım gücüne olan oranı ise Batı dillerinde efficacy olarak adlandırılır. Bu terim dilimize ışık verimliliği ya da ışık etkinliği olarak çevrilebilir. Elektromanyetik ışınımın kızılötesi ve morötesi kısımları aydınlatma için kullanılamaz. Bir kaynağın tam ışık verimi, elektromanyetik ışınımın insan gözü tarafından ne derece algılandığı ile ilgilidir.

Rydberg formülü uyarılmış hidrojen atomundan yayılan elektromanyetik ışınımın dalga boyunun hesaplanmasında kullanılan ve İsveçli fizikçi Johannes Rydberg (1854-1919) tarafından geliştirilen bir formüldür. Bu formül atom yapısının anlaşılmasında büyük rol oynamıştır.

<span class="mw-page-title-main">Kemiosmoz</span> Hücresel solunumu sağlayan elektrokimyasal prensip

Kemiosmoz; iyonların, elektrokimyasal gradyanı azaltmak için seçici geçirgen bir zardan geçme hareketidir. Hücresel solunumdaki ATP sentezinin gerçekleşmesini sağlayan enerjinin büyük bir kısmı hidrojenlerin yaptığı bu hareketten karşılanır.

<span class="mw-page-title-main">Fototrof</span> Metabolik süreçlerde ışık enerjisi kullanan organizma

Fototroflar (Yunanca: φῶς, φωτός = ışık, τροϕή = beslenme) karmaşık organik bileşikler (karbonhidratlar gibi) üretmek ve bundan enerji elde etmek için foton yakalayan organizmalardır. Hücresel çeşitli metabolik süreçleri gerçekleştirmek için ışıktan gelen enerjiyi kullanırlar. Fototrofların zorunlu olarak fotosentetik olduğu yaygın bir yanılgıdır. Hepsi olmasa da birçok fototrof sıklıkla fotosentez yapar: karbon dioksiti yapısal olarak, fonksiyonel olarak veya daha sonraki katabolik süreçler için bir kaynak olarak (örneğin nişasta, şeker ve yağ şeklinde) kullanılmak üzere anabolik olarak organik maddeye dönüştürürler. Tüm fototroflar, hücrenin moleküler enerji birimini(ATP) oluşturmak adına ATP sentaz tarafından kullanılan elektrokimyasal bir devinim oluşturmak için elektron taşıma sistemini veya doğrudan proton pompalamayı kullanır. Fototroflar, ototrof ya da heterotrof olabilir. Elektron ve hidrojenin kaynağı inorganik bileşikler ise (örn. Na2S2O3, bazı mor kükürt bakterilerinde olduğu gibi veya H2S, bazı yeşil kükürt bakterilerinde olduğu gibi) bunlara litotroflar da denebilir ve bu nedenle bazı fotoototroflara fotoliotoototroflar da denir. Fototrof organizmalarına örnekler: Rhodobacter capsulatus, Chromatium, Chlorobium vb.

Fotoheterotroflar heterotrofik fototroflardır - yani ışığı enerji için kullanan, ancak karbondioksiti tek karbon kaynağı olarak kullanamayan organizmalardır. Sonuç olarak, karbon gereksinimlerini karşılamak için çevreden organik bileşikler alırlar; bu bileşikler arasında karbonhidratlar, yağ asitleri ve alkoller bulunur. Fotoheterotrofik organizmaların örnekleri arasında mor kükürt ve yeşil kükürt olmayan bakteriler ve heliobakteriler bulunur. Yakın zamanda yapılan araştırmalar, Doğu Eşekarısı ve bazı yaprak bitlerinin enerji kaynaklarını desteklemek için ışığı kullanabilecekleri belirtilmiştir.