İçeriğe atla

Descartes'ın İşaret Kuralı

Matematikte, Descartes'ın İşaret Kuralı, ilk olarak René Descartes tarafından La Géométrie adlı çalışmasında tanımlanmıştır. Bu teknik ile tek değişkenli bir polinonum, maksimum pozitif ve maksimum negatif köklerinin sayısı, ilave olarak karmaşık ve reel köklerinin sayısı, denklemin kökleri bulunmadan, işaret kuralı ile tespit edilebilir.

Descartes'ın İşaret Kuralı

Pozitif Kökler

Tek değişkenli bir polinomun katsayıları arasındaki işaret değişimi sayısı, polinomun sahip olduğu maksimum pozitif kök sayısına eşittir. Sonuç ya bu değerdir; ya da bu değerden 2'nin bir katının çıkarılmış halidir.

Negatif Kökler

Tek değişkenli bir polinomda, x yerine -x koyarak elde ettiğimiz yeni tek değişkenli polinomun katsayıları arasındaki işaret değişimi sayısı, polinomun sahip olduğu maksimum negatif kök sayısına eşittir. Sonuç ya bu değerdir; ya da bu değerden 2'nin bir katının çıkarılmış halidir.

Karmaşık Kökler

n. dereceden  bir polinom n köke sahiptir. Bu polinomun sahip olduğu minimum karmaşık kök sayısı ise aşağıdaki denklemin sonucuna eşittir.

p pozitif kök sayısını, q negatif kök sayısını, n ise denklemin derecesini ifade eder.

Örnek

Polinomumuz

olsun.

Pozitif Kök Sayısı

Katsayıların işaretlerindeki değişimi ifadesini, ++ +− −− −− −+ +−, şeklinde ifade edebiliriz. Görüldüğü gibi toplam işaret değişimi sayısı 3 adettir. (2. ve 3. ; 5.ve 6. ; 6. ve 7.terimleri arasında) Bu sayı bize, polinomun sahip olduğu, maksimum pozitif kök sayısını verir. Yani 3'dür ya da 3-2 = 1'dir.

Negatif Kök Sayısı

Önce polinomda, x yerine -x koyalım. Yeni polinomumuz şu şekilde

olur.

Katsayıların işaretlerindeki değişimi ifadesini, −+ +− −+ +− −− −− şeklinde ifade edebiliriz. Görüldüğü gibi toplam işaret değişimi sayısı 4 adettir. (1. ve 2. ; 2.ve 3. ; 3. ve 4. ; 4. ve 5. terimleri arasında) Bu sayı bize, polinomun sahip olduğu, maksimum negatif kök sayısını verir. Yani 4'tür ya da 4-2=2 ya da 4-2*2=0'dır.

Karmaşık Kök Sayısı

Örneğimizdeki sonuçları denklemde yerine koyarsak, Pozitif Kök Sayısı için ya 1 ya da 3 Negatif Kök Sayımız ya 4 ya 2 ya da 0 idi.

Bulduğumuz değerlerin, minimum değerlerini, ilgili denklemde yerine koyar isek 6 sonucu elde ederiz. Demek ki polinomumuz 6 adet karmaşık köke, 1 adet reel köke sahip imiş.

Yaptığımız işlemlerin sağlamasını Matlab'te yapalım. Polinomun "roots" komutu yardımı ile kökleri bulduğumuzda ise, bu yöntem ile elde ettiğimiz sonuçların doğruluğunu görebiliriz.

a=[ 1 1 0 1 -1 -1 1 -1]

roots(a)
 -1.2918 + 0.1373i - Negatif Karmaşık Kök
 -1.2918 - 0.1373i - Negatif Karmaşık Kök
 -0.0202 + 1.1459i - Negatif Karmaşık Kök
 -0.0202 - 1.1459i - Negatif Karmaşık Kök
  0.3639 + 0.6091i - Pozitif Karmaşık Kök
  0.3639 - 0.6091i - Pozitif Karmaşık Kök
  0.8961  - Pozitif Reel Kök

Görüldüğü üzere, polinom 4 negatif, 3 pozitif köke sahiptir.

Notlar

Dış bağlantılar

İlgili Araştırma Makaleleri

Sayı, sayma, ölçme ve etiketleme için kullanılan bir matematiksel nesnedir. En temel örnek, doğal sayılardır. Sayılar, sayı adı (numeral) ile dilde temsil edilebilir. Daha evrensel olarak, tekil sayılar rakam adı verilen sembollerle temsil edilebilir; örneğin, "5" beş sayısını temsil eden bir rakamdır. Yalnızca nispeten az sayıda sembolün ezberlenebilmesi nedeniyle, temel rakamlar genellikle bir rakam sisteminde organize edilir, bu da herhangi bir sayıyı temsil etmenin organize bir yoludur. En yaygın rakam sistemi Hint-Arap rakam sistemidir, bu sistem on temel sayısal sembol, yani rakam kullanılarak herhangi bir negatif olmayan tam sayının temsil edilmesine olanak tanır. Sayılar sayma ve ölçme dışında, etiketlerde, sıralamada ve kodlarda kullanılmak için de sıklıkla kullanılır. Yaygın kullanımda, bir rakam ile temsil ettiği sayı net bir şekilde ayrılmaz.

Matematikte reel sayılar kümesi, Fransızca réel “gerçek” den gelmektedir. Oranlı sayılar kümesinin evrim sürecinden elde edilen bir varsayım kombinasyonudur. Reel sayılar kümesi sembolüyle gösterilir.

Matematikte cebirin temel teoremi karmaşık değişkenli polinomların köklerinin varlığıyla ilgili temel bir sonuçtur. D'Alembert-Gauss teoremi olarak da anılmaktadır.

<span class="mw-page-title-main">İntegral</span> fonksiyon eğrisinin altında kalan alan

İntegral veya tümlev, toplama işleminin sürekli bir aralıkta alınan hâlidir. Türev ile birlikte kalkülüsün temelini oluşturan iki işlemden birisidir. Kalkülüsün temel teoremi sayesinde aynı zamanda türevin ters işlemidir.

<span class="mw-page-title-main">Polinom</span> değişkenlerin çarpımlarının toplamı, değişkenlerin gücü ve katsayılar

Matematikte, bir polinom belirli sayıda bağımsız değişken ve sabit sayıdan oluşan bir ifadedir. Polinom kendi içinde toplama, çıkarma, çarpma ve negatif olmayan sayının üssünü alma işlemlerini kullanır. Örnek olarak tek bilinmeyenli bir polinom olan x2 − 4x + 7, ikinci dereceden oluşan bir polinomdur. Diğer bir örnek olarak, x2 − 4/x + 7x3/2 bir polinom değildir, çünkü polinomlarda terimlerin derecelerinin doğal sayı olma zorunluluğu vardır 2. terimde x′i ele alan bir bölme işlemi x'in derecesini negatif yapmaktadır ve 3. terim doğal sayı olmayan bir derece içermektedir (3/2).

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

<span class="mw-page-title-main">Üstel fonksiyon</span>

Üstel işlev veya üstel fonksiyon, matematikte kullanılan işlevlerden biridir. Genel tanımı ax şeklindedir, burada taban a artı değere sahip bir sabittir ve üst x değişkendir. Çoğunlukla

sembolüyle gösterilir. Kimi kitaplarda ise;
sembolü kullanılır.
<span class="mw-page-title-main">Diskriminant</span>

Diskriminant matematik biliminde bir cebirsel kavramdır. Gerçel katsayılı ikinci derece polinom denklemlerin çözümü için kullanılır. İkinci dereceden büyük herhangi bir polinomun köklerinin bulunması için de bu kavram, köklerin toplamı için gereken ifadenin ve köklerin çarpımı için gereken ifadenin bulunması suretiyle genişletilmiştir. Bir polinom için çoklu köklerin varlığı veya yokluğu için gereken koşul da diskriminantın varlığı ve yokluğu ile bulunabilmektedir.

<span class="mw-page-title-main">Cebirsel sayılar</span>

Cebirsel sayılar, rasyonel katsayıları olan tek değişkenli sıfırdan farklı bir polinomun kökü olarak ifade edilebilen sayılardır. Mesela, altın oran, , cebirsel bir sayı örneğidir çünkü x2x − 1 polinomunun bir köküdür. Bu durumda, söz konusu polinomun değerinin sıfıra eşitlendiği x değeridir. Diğer bir örnek olarak, biçimindeki karmaşık sayı, x4 + 4 polinomunun bir kökü olduğundan dolayı cebirsel sayı olarak kabul edilir.

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

i sayısı

Sanal birim ya da i sayısı, x2 = -1 eşitliğini sağlayan bir sayıdır. Reel sayılar kümesindeki hiçbir sayının karesi negatif olamayacağı için, bu ikinci dereceden denklemi sağlayan fakat reel sayılar kümesine ait olmayan böyle bir sayı, genellikle i notasyonu ile gösterilir. i sayısı, ℝ ile gösterilen reel sayılar kümesini ℂ ile gösterilen kompleks sayılar kümesine genişleten ve sabit olmayan her bir P(x) polinomu için en az bir kök sağlayan matematiksel bir kavramdır. "Hayali" terimi negatif kareye sahip gerçek sayı olmadığı için kullanılır.

Matematikte, birkaç fonksiyon ya da fonksiyon gruplarının kendi isimleri yeterli öneme layıktır. Bu makaleler fonksiyonları açıklamak için olan daha ayrıntılı olarak gösteren bir listedir. İstatistik dışı ve matematiksel fizik gelişmeleri sonucu özel fonksiyonlar büyük bir teori olmuştur. Modern bir, soyut incelik fonksiyon uzayıları geniş karşılaştırma görünümü, sonsuz-boyutlu ve 'isimsiz' fonksiyonlar içindeki ve simetri ya da ilişki harmonik analiz ve grup temsilileri gibi özellikler ile özel fonksiyonlar ile seçilmiştir.

Matematiğin bir alt dalı olan karmaşık analizde, holomorf bir f fonksiyonunun sıfırı veya kökü f(a) = 0 eşitliğini sayılan karmaşık a sayısına verilen bir addır. Başka bir deyişle, holomorf fonksiyonların sıfır değerini aldığı karmaşık sayılara o fonksiyonun sıfırları adı verilir.

<span class="mw-page-title-main">Kök (matematik)</span>

Matematikte gerçel, karmaşık veya daha genel bir anlamda vektör değerli bir fonksiyonun kökü, fonksiyonun tanım kümesinde bulunan ve fonksiyonun 0 değerini aldığı noktalardır. Yani, eğer bir V kümesinden bir W vektör uzayına tanımlı bir fonksiyonu

<span class="mw-page-title-main">İşaret (matematik)</span>

Matematikte işaret kavramı, sıfırdan farklı her bir reel sayının pozitif veya negatif olduğunu belirtir. Her ne kadar bazen işaretli sıfır kullanılsa bile, sıfırın kendisi işaretsizdir. Matematik ve fizikte kullanılan reel sayıların toplamaya göre tersini ifade etmek için işaret değiştirme işlemi yapılır.

<span class="mw-page-title-main">Bézout teoremi</span> aciklama

Bézout teoremi, cebirsel geometride n değişkenli n polinomun ortak sıfırlarının sayısı ile ilgili bir ifadedir. Orijinal biçiminde teorem, genel olarak ortak sıfırların sayısının, polinomların derecelerinin çarpımına eşit olduğunu belirtir. Adını Fransız matematikçi Étienne Bézout'dan almıştır.

<span class="mw-page-title-main">Matematikte simetri</span> matematikte simetri kavramı

Simetri yalnızca geometride değil, matematiğin diğer dallarında da ortaya çıkar. Simetri bir tür değişmezliktir: matematiksel bir nesnenin bir dizi işlem veya dönüşüm altında değişmeden kaldığı özelliktir.

<span class="mw-page-title-main">Kuadratik formül</span>

Temel cebirde, kuadratik formül, bir ikinci dereceden denklemin köklerini (çözümlerini) bulan bir formüldür. İkinci dereceden bir denklemi çözmek için ikinci dereceden formülü kullanmak yerine çarpanlara ayırma, tam kareye tamamlama, grafik çizme ve diğerleri gibi başka yollar da vardır.

Matematikte, Ruffini'nin kuralı, bir polinomun Öklid bölünmesinin x – r biçimindeki bir denklem ile kağıt kalemle hesaplanması için geliştirilmiş bir yöntemdir. 1804 yılında Paolo Ruffini tarafından tanımlanmıştır. Kural, bölenin doğrusal bir bölen olduğu özel bir sentetik bölme durumudur.

<span class="mw-page-title-main">Trigonometrik polinom</span> Matematiksel bir fonksiyon

Sayısal analiz ve matematiksel analiz alt alanlarında, bir trigonometrik polinom, sin(nx) ve cos(nx) fonksiyonlarının sonlu bir doğrusal kombinasyonu olup n bir veya daha fazla doğal sayı değerini alır. Gerçel değerli fonksiyonlar için, katsayılar gerçel sayılar olarak alınabilir. Kompleks katsayılar için, böyle bir fonksiyon ile sonlu bir Fourier serisi arasında bir fark yoktur.