İçeriğe atla

Denklem

Denklem, iki niceliğin eşitliğini gösteren bağıntıdır. Araya (=) işareti konularak ifade edilir. Denklemlerde eşitlik değişkenin belirli değerleri için sağlanır. Değişkenlerin her değeri için geçerli olan eşitliklere özdeşlik denir.

(x+y)²= x²+2xy+y² özdeşlik, x²-3x+2=0 ifadesi ise bir denklemdir.

Denklemlerde değişkenlerin en büyük kuvveti denklemin derecesini gösterir. Her terimin derecesi aynı olan denklemlere homojen denklem denir.

Sınıflandırılması

tmievückmaşei
Üç bilinmeyenli bir denklemin terazi modeli

Ayrıca bakınız

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Diferansiyel denklem</span>

Matematikte, diferansiyel denklem, bir ya da birden fazla fonksiyonu ve bunların türevlerini ilişkilendiren denklemdir. Fizik, kimya, mühendislik, biyoloji ve ekonomi alanlarında matematiksel modeller genellikle diferansiyel denklemler kullanılarak ifade edilirler. Bu denklemlerde, fonksiyonlar genellikle fiziksel ya da finansal değerlere, fonksiyon türevleriyse değerlerin değişim hızlarına denk gelir.

Regresyon analizi, iki ya da daha çok nicel değişken arasındaki ilişkiyi ölçmek için kullanılan analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa buna tek değişkenli regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon analizi olarak isimlendirilir. Regresyon analizi ile değişkenler arasındaki ilişkinin varlığı, eğer ilişki var ise bunun gücü hakkında bilgi edinilebilir. Regresyon terimi için öz Türkçe olarak bağlanım sözcüğü kullanılması teklif edilmiş ise de Türk ekonometriciler arasında bu kullanım yaygın değildir.

<span class="mw-page-title-main">Adi diferansiyel denklem</span>

Matematikte adi diferansiyel denklem, tek değişkenli fonksiyonların türevlerini ilişkilendiren diferansiyel denklem çeşididir. Adi diferansiyel denklemler adı daha yaygındır. Kapalı olarak şeklinde gösterilirler. Bu ifadede denklemin derecesini gosterir.

<span class="mw-page-title-main">Parabol</span> ikinci dereceden olan fonksiyonların grafiği

Parabol, bir düzlemde alınan sabit bir "d" doğrusu ile sabit bir "F" noktasından eşit uzaklıktaki noktaların geometrik yerleştirilmesidir. Cebirde ise y=ax2+bx+c şeklindeki ikinci derece fonksiyonları grafiği olarak bilinir.

Zaman serisi modellerinde, otoregresif bir ekonometrik modelde denklemi için ise birim kökün varlığından söz edilir. Bu denklemde , ilgili değişkenin t zamanındaki değerini ifade etmektedir. ise değişkenin bir önceki dönemde aldığı değeri ifade etmektedir. Denklemde a terimini ihmal ederek içeren ifadeyi sol tarafa atarsak, ifadesini elde ederiz. b'nin bir olduğu durumda değişkenin iki dönem arasındaki değeri sağ tarafta kalan rassal bir terime eşit demektir. Bu ise birim kökün varlığı sebebiyle serinin rassal bir sürecin etkisinde olduğunu ifade eder. Serinin dönemler arası değişimi tesadüfi olduğu için uzun dönemde varyansı kovaryansı ve ortalaması sabit olmayacaktır. Dolayısıyla birim kök içeren bir serinin durağan olmadığı söylenir.


Matematikte, bir kısmi diferansiyel denklem birkaç değişkenli bir fonksiyon ile bu fonksiyonun değişkenlere göre kısmi türevleri arasındaki ilişkiyi inceler.

<span class="mw-page-title-main">Doğrusal denklem</span>

Doğrusal ya da lineer denklem terimlerinin her biri ya birinci dereceden değişken ya da bir sabit olan denklemlerdir. Böyle denklemlere "doğrusal" denmesinin nedeni içerdikleri terim ve değişkenlerin sayısına bağlı olarak (n) düzlemde ya da uzayda bir doğru belirtmesindendir. Doğrusal denklemlerin en yaygını bir ve değişkeni içeren aşağıdaki formdur:

En küçük kareler yöntemi, birbirine bağlı olarak değişen iki fiziksel büyüklük arasındaki matematiksel bağlantıyı, mümkün olduğunca gerçeğe uygun bir denklem olarak yazmak için kullanılan, standart bir regresyon yöntemidir. Bir başka deyişle bu yöntem, ölçüm sonucu elde edilmiş veri noktalarına "mümkün olduğu kadar yakın" geçecek bir fonksiyon eğrisi bulmaya yarar. Gauss-Markov Teoremi'ne göre en küçük kareler yöntemi, regresyon için optimal yöntemdir.

Birinci dereceden bir bilinmeyenli denklemler; a sıfırdan farklı, b ise herhangi bir gerçel veya karmaşık sayı olmak üzere,

<span class="mw-page-title-main">Üstel fonksiyon</span>

Üstel işlev veya üstel fonksiyon, matematikte kullanılan işlevlerden biridir. Genel tanımı ax şeklindedir, burada taban a artı değere sahip bir sabittir ve üst x değişkendir. Çoğunlukla

sembolüyle gösterilir. Kimi kitaplarda ise;
sembolü kullanılır.
<span class="mw-page-title-main">François Viète</span> Fransız matematikçi (1540 – 1603)

François Viete Fransız matematikçi. Adıyla anılan Vieta formüllerini keşfetmiştir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Euler özdeşliği</span>

Matematiksel çözümlemede Euler özdeşliği olarak adlandırılan ve Leonhard Euler tarafından bulunan eşitlik

<span class="mw-page-title-main">Doğrusal denklem dizgesi</span>

Doğrusal denklem dizgesi, birkaç tane aynı tip değişkenleri içeren birkaç tane doğrusal denklemlerin oluşturduğu topluluktur. Örneğin:

<span class="mw-page-title-main">Teğet</span>

Teğet, iki geometrik cismin, birbirlerine sadece bir noktadan temas ettiklerinde oluşan geometrik durum. İngilizcede tangent olarak anılan terimin kökeni Latince tangere (dokunuş) kelimesidir.

Sinyal (işaret), fiziksel değişkenlerin durumu hakkında bilgi taşıyan ve matematiksel olarak fonksiyon (İşlev) biçiminde gösterilen kavrama denir.

Diofantos denklemi diğer bir adıyla Diophantine denklemleri adını M.S. 3. yüzyılda yaşadığı tahmin edilen Antik Yunan matematikçilerden Diofantos'dan alan değişkenleri ve katsayıları tam sayılar olan denklemlerdir. Diofantos Arithmetika adlı sadece 6 cildi günümüze ulaşan çalışmasında 130 denkleme ve bunların çözümlerine yer vermiştir.

Matematikte Bernoulli diferansiyel denklemi, birinci mertebeden bir adi diferansiyel denklemin açık biçimi şöyledir:

,
<span class="mw-page-title-main">Süperpozisyon prensibi (fizik)</span> Bir parçacık veya sistemin belli bir zamanda birden fazla durumda olabilmesi.

Fizikte ve sistem teorisinde, süperpozisyon prensibi, tüm lineer sistemler için bir veya daha fazla uyarılar tarafından oluşan net tepki olarak belirtilen süper pozisyon özelliği olarak da bilinir. Kuantum mekaniğinde iki dolanık parçanın durumuna da süperpoziyon denilir. Bu uyarılar her bir uyarıcı tarafından tek tek meydana gelen uyarıların toplamıdır. Eğer giriş A, X tepkisini üretirse ve giriş B, Y tepkisini üretirse, sonuç olarak giriş (A+B), (X+Y) tepkisini üretir. Homojenlik ve eklenebilirlik özellikleri birlikte süperpozisyon prensibi olarak adlandırılır. Bir lineer fonksiyon süperpozisyon prensibini sağlayanlardan biridir ve şöyle tanımlanır:

 Eklenebilirlik
  Homojenlik
skaler a için.
<span class="mw-page-title-main">Maxwell ilişkileri</span>

Maxwell ilişkileri İkinci dereceden türevlerin simetri ve termodinamik potansiyellerin tanımlarından türetilebilen termodinamik denklemler dizisidir. Bu ilişkiler 19.yüzyıl fizikçisi James Clerk Maxwell tarafından adlandırılmıştır.