İçeriğe atla

Demet teoremi

Geometride demet teoremi; en basit durumda, gerçek Öklid düzlemindeki altı çember ve sekiz nokta üzerine bir ifadedir. Genel olarak, sadece oval Möbius düzlemleri tarafından meydana getirilen bir Möbius düzleminin bir özelliğidir. Demet teoremi Miquel teoremi ile karıştırılmamalıdır.

Açıklama

Gerçek Öklid uzayındaki oval bir Möbius düzlemi, bir küre veya bir elipsoid veya bir elipsoidin uygun bir yarısına yapıştırılmış bir kürenin yarısı veya , . . . . denklemli yüzey gibi yumurtaya benzer bir yüzeyin düzlem bölümlerinin geometrisi olarak düşünülebilir. Yumurta benzeri yüzey sadece bir küre ise, klasik gerçek Möbius düzleminin uzay modeli, küre üzerindeki çember geometrisi elde edilir.

Bir oval Möbius düzleminin temel özelliği, bir ovoid aracılığıyla bir uzay modelinin varlığıdır. 3 boyutlu bir izdüşümsel uzaydaki bir ovoid, a) 0, 1 veya 2 noktalardaki çizgilerle kesişen ve b) rastgele bir noktadaki teğetleri, düzlemi (teğet düzlemi) kapsayan bir noktalar kümesidir. İzdüşümsel 3-uzayda bir ovoidin geometrisi, oval Möbius düzlemi olarak adlandırılan bir Möbius düzlemidir. Geometrinin nokta kümesi, ovoidin noktalarından oluşur ve eğriler (döngüler), ovoidin düzlem bölümleridir. Uygun bir stereografik izdüşüm şunları gösterir: Herhangi bir oval Möbius düzlemi için bir düzlem modeli vardır.[1] Klasik durumda düzlem modeli, dairelerin ve çizgilerin geometrisidir (herhangi bir çizgi bir nokta ile tamamlanır.). Demet teoreminin bir düzlemsel ve bir uzaysal yorumu vardır. Düzlemsel modelde, ilgili çizgiler olabilir. Demet teoreminin ispatı, uzamsal model içinde gerçekleştirilir.

Möbius düzlemi: Demet teoremi

Herhangi bir oval Möbius düzlemi için demet teoremi şunları savunur:

Demet teoremi:

  • Eğer farklı noktaları için altı dörtlünün , beşi en az dört döngüsünde aynı çember içinde bulunur (bir döngüde bulunur), öyleyse 6. dörtlü de aynı çember içinde bulunur.[2]

Kanıt, esasen 3 boyutlu bir izdüşümsel uzaydaki üç düzlemin tek bir noktada kesiştiği gerçeğini kullanan aşağıdaki faktörlerin bir sonucudur:

  1. Döngüleri içeren düzlemler bir noktasında kesişir. Bu nedenle , doğrularının (uzayda !) kesişme noktasıdır.
  2. döngülerini içeren düzlemler noktasında kesişir. Bu nedenle aynı zamanda doğrularının kesişme noktasıdır.

Bu şunları sağlar: a) ve b) aynı zamanda noktasında kesişir. Son ifade şu anlama gelir: döngüseldir. İlgili düzlemler ortak bir noktasına sahip olup, bunlar bir düzlem demetinin öğeleridir.

Demet teoreminin önemi Jeff Kahn tarafından gösterildi.

Kahn Teoremi: Bir Möbius düzlemi, ancak ve ancak demet teoremini yerine getirirse, ovaldir.[3]

Demet teoremi, izdüşümsel düzlemler için Desargues teoreminin Möbius düzlemleri için olduğuna benzer bir anlama sahiptir. Demet teoremi, a) bir aykırı cisim (bölme halkası) ve b) bir ovoidin mevcudiyetini izler. Miquel'in daha katı teoremi geçerliyse, aykırı cisim bile değişmeli (cisim) ve ovoid bir kuadriktir.

Not: Ovoid olmayan Möbius düzlemleri vardır.[4]

Not: Oval Laguerre düzlemleri için de benzer anlamı olan bir demet teoremi vardır.[5]

Notlar

  1. ^ Hartmann, s. 63.
  2. ^ Hartmann, s. 61.
  3. ^ Kahn, s. 62.
  4. ^ Hartmann, s. 64.
  5. ^ Hartmann, s. 78.

Kaynakça

Konuyla ilgili yayınlar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Ceva teoremi</span> Öklid düzlem geometrisinde bir üçgenin kenar doğru parçası çiftlerinin çarpımlarının oranının bire eşit olduğunu belirten teorem

Ceva Teoremi, herhangi bir ABC üçgeni verildiğinde, A, B ve C'den üçgenin zıt kenarlarına doğru olan doğru parçalarının üçgenin her iki kenarında oluşan doğru parçası çiftlerinin oranlarının çarpımı 1'e eşit olduğunda tek noktada kesiştiğini belirtir. Teorem adını İtalyan matematikçi Giovanni Ceva'dan alır.

Yüzey, matematikte ve özellikle topolojide iki boyutlu çokkatlı. İki gerçel değişkenli ve gerçel değerli bir fonksiyonun üç boyutlu uzayda (R³) grafiği tipik yüzey örneğidir. Ayrıca Dünya yüzeyi, bir yumurtanın kabuğu, bir simit birer yüzeydir.

<span class="mw-page-title-main">Desargues teoremi</span>

Projektif geometride, Desargues teoremi, adını Girard Desargues'den alır, şunu belirtir:

İki üçgen, ancak ve ancak merkezi olarak perspektif içindeyse eksenel olarak perspektif içindedir.
<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<span class="mw-page-title-main">Crossbar (Pasch) teoremi</span> Diğer iki ışın arasındaki bir ışın, ilk iki ışın arasındaki herhangi bir çizgi parçasını keser.

Geometride Crossbar (Pasch) teoremi, ışını ışını ile ışını arasındaysa, ışınının doğrusu parçasını keseceğini belirtir.

<span class="mw-page-title-main">Gnomon teoremi</span> Bir gnomonda meydana gelen belirli paralelkenarlar eşit büyüklükte alanlara sahiptir.

Gnomon teoremi, bir gnomon'da meydana gelen belirli paralelkenarların eşit büyüklükte alanlara sahip olduğunu belirtir. Gnomon, geometride benzer bir paralelkenarı daha büyük bir paralelkenarın bir köşesinden çıkararak oluşturulan bir düzlem şeklidir; veya daha genel olarak, belirli bir şekle eklendiğinde, aynı şekle sahip daha büyük bir şekil oluşturan bir şekildir.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

<span class="mw-page-title-main">Brianchon teoremi</span>

Geometride Brianchon teoremi, bir konik kesit etrafındaki bir altıgen ile sınırlandırıldığında, ana köşegenlerinin tek bir noktada kesiştiğini belirten bir teoremdir. Adını Fransız matematikçi Charles Julien Brianchon'dan (1783–1864) almıştır.

<span class="mw-page-title-main">Kelebek teoremi</span> Bir çemberin başka iki kirişinin üzerinden çizilen kirişin orta noktası hakkındaki teorem

Kelebek teoremi, Öklid geometrisinin klasik bir sonucudur ve aşağıdaki gibi ifade edilebilir:

<span class="mw-page-title-main">Bézout teoremi</span> aciklama

Bézout teoremi, cebirsel geometride n değişkenli n polinomun ortak sıfırlarının sayısı ile ilgili bir ifadedir. Orijinal biçiminde teorem, genel olarak ortak sıfırların sayısının, polinomların derecelerinin çarpımına eşit olduğunu belirtir. Adını Fransız matematikçi Étienne Bézout'dan almıştır.

<span class="mw-page-title-main">Çember sıkıştırma teoremi</span>

Çember sıkıştırma teoremi, düzlemde iç kısımları ayrık olan çemberler arasındaki olası teğetlik ilişkilerini tanımlar. Dairesel sıkıştırma, içleri ayrık olan bağlantılı bir çember koleksiyonudur. Bir çember sıkıştırmasının kesişme çizgesi (grafı), her çember için bir tepe noktasına ve teğet olan her çember çifti için bir kenara sahip olan çizgedir. Çember sıkıştırma, düzlemde veya eşdeğer olarak küre üzerindeyse, kesişme çizgesine madeni para (coin) çizgesi denir; daha genel olarak, iç-ayrık geometrik nesnelerin kesişme çizgelerine, teğetlik çizgeleri veya temas çizgeleri denir. Madeni para çizgeleri her zaman bağlı, basit ve düzlemseldir. Çember sıkıştırma teoremi, bunların bir çizgenin madeni para çizgesi olması için tek gereklilik olduğunu belirtir:

Geometride Descartes teoremi, her dört öpüşen veya karşılıklı teğet çember için, çemberlerin yarıçaplarının belirli bir ikinci dereceden denklemi sağladığını belirtir. Bu denklemi çözerek, verilen üç karşılıklı teğet çembere teğet olan dördüncü bir çember oluşturulabilir. Teorem adını, 1643'te teoremi tanımlayan René Descartes'tan almıştır.

<span class="mw-page-title-main">Droz-Farny doğru teoremi</span> Rastgele bir üçgenin ortasından geçen iki dik doğrunun özelliği hakkında teorem

Öklid geometrisinde, Droz-Farny doğru teoremi, keyfi bir üçgenin yükseklik merkezinden (ortosantr) geçen iki dik doğrunun bir özelliğidir.

<span class="mw-page-title-main">Finsler–Hadwiger teoremi</span> Bir tepe noktasını paylaşan herhangi iki kareden türetilen üçüncü bir kareyi açıklar

Finsler–Hadwiger teoremi, bir tepe noktasını paylaşan herhangi iki kareden türetilen üçüncü bir kareyi tanımlayan Öklid düzlem geometrisindeki ifadedir. Teorem adını, üçgenin kenar uzunlukları ve alanıyla ilgili Hadwiger-Finsler eşitsizliğini yayınladıkları makalenin bir parçası olarak 1937'de yayınlayan Alman ve İsviçreli matematikçi Paul Finsler ile İsviçreli matematikçi Hugo Hadwiger'den almıştır.

<span class="mw-page-title-main">Çevre açı</span>

Geometride, çevre açı, çember üzerinde iki sekant (kesen) çizgisi kesiştiğinde bir çember üzerinde oluşan açıdır. Çember üzerindeki bir nokta ile çember üzerinde verilen diğer iki noktanın oluşturduğu açı olarak da tanımlanabilir.

<span class="mw-page-title-main">Kesişen kirişler teoremi</span>

Kesişen kirişler teoremi veya sadece kiriş teoremi, bir çember içinde kesişen iki kiriş tarafından oluşturulan dört doğru parçasının ilişkisini tanımlayan temel geometrideki bir ifadedir. Her bir kirişteki doğru parçalarının uzunluklarının çarpımlarının eşit olduğunu belirtir. Öklid'in Unsurlarının 3. kitabının 35. önermesidir.

<span class="mw-page-title-main">Kesişen kesenler teoremi</span>

Kesişen kesen (sekant) teoremi veya sadece kesen (sekant) teoremi, kesişen iki sekant ve ilişkili çember tarafından oluşturulan doğru parçalarının ilişkisini açıklayan temel bir geometri teoremidir.

Geometride, Jung teoremi, herhangi bir Öklid uzayındaki bir dizi noktanın çapı ile bu kümenin minimum çevreleyen topunun yarıçapı arasındaki bir eşitsizliktir. Bu eşitsizliği ilk kez 1901'de inceleyen Heinrich Jung'un adını almıştır. En küçük çember problemini açık bir biçimde çözmek için algoritmalar da mevcuttur.

<span class="mw-page-title-main">Pompeiu teoremi</span>

Pompeiu teoremi, Romanyalı matematikçi Dimitrie Pompeiu tarafından keşfedilen bir düzlem geometrisi sonucudur. Teorem basittir, ancak klasik değildir. Aşağıdakileri ifade eder:

Bir eşkenar üçgen verildiğinde Düzlemde ABC ve ABC üçgeninin düzleminde bir P noktası, PA, PB ve PC uzunlukları bir üçgenin kenarlarını oluşturur.
<span class="mw-page-title-main">Reuschle teoremi</span> Ortak bir noktada kesişen bir üçgenin cevianlarının bir özelliğini tanımlar

Temel geometride, Reuschle teoremi, ortak bir noktada kesişen bir üçgenin cevianlarının bir özelliğini tanımlar ve adını Alman matematikçi Karl Gustav Reuschle (1812-1875)'den alır. Ayrıca Fransız matematikçi Olry Terquem (1782-1862)'in adıyla 1842'de yayınlayan Terquem teoremi olarak da bilinir. Teorem, Euler doğrusu ve Feuerbach'ın dokuz nokta çemberi ile bağlantılı olarak benzer biçimde bulunan belirli köşe çaprazlarının kesişim özellikleriyle ilgili bir problemi ele almaktadır. Reuschle teoreminin ispatı, sekant teoreminin yanı sıra Ceva teoremi ve onun karşıt teoremine dayanmaktadır.