İçeriğe atla

Delta metodu

Delta metodu istatistikte, bir asimtotik normal istatistiki tahmin edicinin fonksiyonu için bu tahmin edicinin sınırlayıcı varyans bilgisi kullanılarak yaklaşık bir olasılık dağılımı türetme metodudur. Delta metodu merkezi limit teoreminin genelleştirilmiş hali olarak ele alınabilir.

Tek Değişkenli Delta metodu

Xn dağılımda

koşulunu sağlayan rassal değişkenler dizisi olsun. (Burada ve sonlu değere sahip sabitleri ve dağılımda yakınsamayı temsil etmektedir.)

Veri bir g fonksiyonu ve belli bir değeri için 'nın var olduğunu ve sıfıra eşit olmadığını varsayalım. O halde dağılımda,

olur.

Tek Değişkenli Durumda Kanıt

süreklidir varsayımı altında kanıtı gerçekleştirmek oldukça kolaydır. Öncelikle ortalama değer kuramı kullanılarak başlanır;

Burada , ve arasında bir değer almaktadır. , 'yı ima ettiğinden ve sürekli olduğundan Slutsky Teoremi'nin uygulanması sonucunda

elde edilir ki burada olasılıkta yakınsamayı ifade etmektedir.

İfadeleri düzenler ve ile çarparsak

ifadesini elde ederiz.

Varsayım gereği,

olduğundan Slutsky Teoreminden

elde edilir ve kanıt tamamlanır.

Çok Değişkenli Delta metodu

Tanım gereği, istatistikte tutarlı tahmin edici gerçek değeri olan 'ya yakınsar ve genelde asimtotik normalite elde etmek için merkezi limit teoremi uygulanabilir.

burada n gözlem sayısını ve (simetrik pozitif yarı belirli) kovaryans matrisini ifade etmektedir. B tahmin edicisinin h fonksiyonuna ait varyansını tahmin etmek istediğimizi varsayalım. Taylor serisinin ilk iki terimini ele alır ve gradyan için vektör notasyonu kullanırsak, h(B)'yi

olarak tahmin edebiliriz ki bu h(B)'nin varyansının yaklaşık olarak,

olduğunu ima eder.

(Çok değişkenli reel değerli fonksiyonlar için) Ortalama limit teoremi kullanılarak bunun birinci derece yakınlaştırmaya dayanmadığı görülebilir.

Dolayısıyla Delta metodu,

veya tek değişken ifadesiyle,

olduğunu ima eder.

Örnek

'in ve parametreleri ile binom dağılıma sahip olduğunu varsayalım.

olduğundan, ile delta metodunu uygulayabilir ve

olduğunu görebiliriz. Dolayısıyla, 'in varyansı yaklaşık olarak

şeklindedir. Dahası, eğer ve sırasıyla ve büyüklüklerinde bağımsız örneklemlerden elde edilen farklı grup oranı tahminleriyse, tahmini göreli risk 'nın logaritması yaklaşık olarak ile tahmin edilebilecek varyansa sahip normal dağılıma sahiptir. Bu göreli risk için hipotez testi kurmak veya güven aralığı oluşturmak için faydalıdır.

Not

Delta metodu genellikle Xn veya B'nin asimtotik olarak normal olarak dağıldığı varsayımı hariç yukarıdaki ile benzer biçimde kullanılmaktadır. Genelde tek şart varyansın küçük olduğudur. Bu durumda sonuçlar sadece dönüştürülmüş büyüklükler için ortalama ve kovaryanslar için yaklaştırımlar verir. Örneğin, Klein (1953, p. 258)'da sunulan formüller şu şekildedir;

burada hr, h(B)'nin rinci elemanı ve Bi, 'nin iinci elemanıdır. Tek fark Klein'ın bunları aslında yaklaştırımlar olmasına rağmen özdeşlikler olarak ifade etmesidir.

Ayrıca bakınız

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Del işlemcisi</span>

Yöney analizinde del işlemcisi, 3 boyutlu Kartezyen koordinatlarda nabla işlemcisine denk gelir ve simgesiyle gösterilir.

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Mie saçılması</span>

Mie saçılması veya Mie teorisi, düzlem bir elektromanyetik dalganın (ışık) homojen bir küre tarafından saçılmasını ifade eder. Maxwell denklemlerinin Lorenz–Mie–Debye çözümü olarak da bilinmektedir. Denklemlerin çözümü sonsuz bir vektör küresel harmonik serisi şeklinde yazılır. Saçılma ismini fizikçi Gustav Mie'den almaktadır; analitik çözümü ilk kez 1908 yılında yayınlanmıştır.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

İstatistik bilim dalında D'Agostino'nun K2 sınaması normal dağılımdan ayrılmayı ölçmek için kullanılan bir uygulama iyiliği ölçüsüdür. Örneklem basıklık ve çarpıklık ölçülerinin dönüşümlerinden elde edilmiştir. K2 istatistiği şöyle elde edilir:

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Görüntü yük yöntemi, elektrostatikte kullanılan bir soru çözüm tekniğidir. İsimlendirmenin kökeni problemdeki sınır koşullarını bazı sanal yükler ile değiştirme yönteminden gelir.

Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

<span class="mw-page-title-main">Stres-enerji tensörü</span>

Stres-enerji tensörü, fizikte uzayzaman içerisinde enerji ve momentumun özkütle ve akısını açıklayan, Newton fiziğindeki stres tensörünü genelleyen bir tensördür. Bu, maddedinin, radyasyonun ve kütleçekimsel olmayan kuvvet alanının bir özelliğidir. Stres-enerji tensörü, genel göreliliğin Einstein alan denklemlerindeki yerçekimi alanının kaynağıdır, tıpkı kütle özkütlesinin Newton yerçekiminde bu tip bir alanın kaynağı olması gibi.

Hamiltonyan optik ve Lagrange optiği, matematiksel formülasyonlarının büyük bir kısmını Hamilton mekaniği ve Lagrange mekaniği ile paylaşan Geometrik optiğin iki formülasyonudur.

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.

Trigonometrik fonksiyonları tanımlamanın birkaç eşdeğer yolu vardır ve bunlar arasındaki trigonometrik özdeşliklerin kanıtları seçilen tanıma bağlıdır. En eski ve en temel tanımlar dik üçgenlerin geometrisine ve kenarları arasındaki orana dayanır. Bu makalede verilen kanıtlar bu tanımları kullanır ve dolayısıyla bir dik açıdan büyük olmayan negatif olmayan açılar için geçerlidir. Daha büyük ve negatif açılar için Trigonometrik fonksiyonlar bölümüne bakınız.

Trigonometrik fonksiyonların türevleri, trigonometrik bir fonksiyonun türevini yani bir değişkene göre değişim oranını bulmanın matematiksel sürecidir. Örneğin, sinüs fonksiyonunun türevi şeklinde yazılır, bu da sin(x) fonksiyonunun belirli bir açı x = a için değişim oranının o açının kosinüsü ile verildiği anlamına gelir.