İçeriğe atla

Del işlemcisi

Del işlemcisi,
nabla simgesi
tarafından temsil edilir.

Yöney analizinde del işlemcisi, 3 boyutlu Kartezyen koordinatlarda nabla işlemcisine denk gelir ve simgesiyle gösterilir.

Bu işlemci fiziksel matematikte ve yöney analizinde büyük kolaylık sağlaması bakımından bir uzlaşımdır. Temelde parçalı türevdir ve tam türevin çarpanlarından biri olarak düşünülebilir. Bilinen çarpma ve çarpım işlemleriyle yöneysel ve sayıl alanlara etkir. Ancak bilinen çarpmayla kullanıldığı halde değişmeli değildir, yazılımda sağ tarafındaki çarpana uygulanır.

Tanım

Del işlemcisi tam türevden tanımlanır:

O halde, işlemci

olarak tanımlanmış olur. Burada işlemcisi parçalı türev, 'ler de birim yöneydir. =(1,2,3) n-boyutlu Öklit uzayında bu gösterim:

olarak genellenebilir. Buradaki 'ler birim yöneylerdir ve =1, 2, ..., n alınır.

Ayrıca Einstein toplam uzlaşımı gereği nabla işlemcisi tensör olarak:

şeklinde de gösterilebilir. tensör gösteriminde 'ye etkiyen del işlemcisi virgülle de gösterilebilir:

Burada =1,2,3 alınır.

Örnekler

  • Fizikte korunumlu kuvvetler için potansiyel ifadesi yazılır, bu yüzden korunumlu bir kuvveti için:

ifadesi geçerlidir ki burada göndermesi, eğer elektriksel kuvvetse elektrik alan, eğer manyetik kuvvetse manyetik alan ya da eğer kütleçekim kuvveti ise kütleçekimi alanıdır.

  • d'Alembert İşlemcisi

Özel görelilikte del işlemcisi

Genelde 3 boyutlu Öklityen uzay ile 4 boyutlu Minkowski uzayı arasındaki fark bu maddede de uygulandığı gibi genellikle 3-yöneyler Latin abecesiyle (i,j,k,...) gösterilirken 4-yöneylerin yunan abecesiyle ( ) gösterilmektedir.

Del işlemcisi genel olarak her yöne ait parçalı türevdir. Einstein'ın Özel Görelilik kuramında 4-del işlemcisi şu şekilde tanımlanır:

Burada alınır ve c ışık hızıdır.

Tensör gösteriminde virgül türev olarak ifade edilir:

Burada alınır.

Maxwell denklemlerinin tensör gösterimi

Maxwell Denklemler tensörlerle ifade edilebilir. Kaldı ki bu şekilde dört tane olan denklem sayısı ikiye inmiş olur.

Bu denklemleri daha da sade yazabiliriz:

Buradaki çarpanı Levi-Civita Tensörüdür.[1][2][3]

Kaynakça

  1. ^ Schey, H. M. (1997). Div, Grad, Curl, and All That: An Informal Text on Vector Calculus. New York: Norton. ISBN 0-393-96997-5. 
  2. ^ Miller, Jeff. "Earliest Uses of Symbols of Calculus". 1 Mayıs 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Ekim 2013. 
  3. ^ Moler, ed., Cleve (26 Ocak 1998). "History of Nabla". netlib.org. 12 Mayıs 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 5 Ekim 2013. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

Vektör hesaplamada, divergence bir vektör alanının kaynak ya da batma noktasından uzaktaki bir noktada genliğini ölçen işleçtir; yani bir vektör alanının uzaksaması işaretli bir sayıdır. Örneğin ısındıkça genişleyen havanın hızını gösteren bir vektör alanının uzaksaması pozitif olacaktır, çünkü hava genişlemektedir. Eğer hava soğuyup daralıyorsa uzaksama negatif olacaktır. Bu özel örnekte uzaksama yoğunluğun değişiminin ölçüsü olarak düşünülebilir.

ile gösterilen bir vektör alanının rotasyoneli, nabla operatörü ile 'nin vektörel çarpımına eşittir.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Student'in t dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında t-dağılımı ya da Student'in t dağılımı genel olarak örneklem sayısı veya sayıları küçük ise ve anakütle normal dağılım gösterdiği varsayılırsa çıkartımsal istatistik uygulaması için çok kullanılan bir sürekli olasılık dağılımıdır. Çok popüler olarak tek bir anakütle ortalaması için güven aralığı veya hipotez sınaması ve iki anakütle ortalamasının arasındaki fark için güven aralığı veya hipotez sınamasında, yani çıkarımsal istatistik analizlerde, uygulama görmektedir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

D'Alembert işlemcisi, özel görelilikte, elektromanyetizmada ve dalga kuramında; Minkowski uzayını ve Einstein alan denklemlerinin diğer çözümlerini sağlayan Laplace işlemcisine d'Alembert işlemcisi veya dalga işlemcisi denir.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

Uzayzamanda 2 nokta düşünelim ve

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

<span class="mw-page-title-main">Gradyan</span>

Bir skaler alanın yön türevi (gradyan) artımın en çok olduğu yere doğru yönelmiş bir vektör alanını verir ve büyüklüğü değişimin en büyük değerine eşittir.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

<span class="mw-page-title-main">Van Stockum tozu</span>

Genel görelilikte, Van Stockum tozu Einstein alan denklemlerinin silindirik simetri ekseni etrafında dönen tozun oluşturduğu yer çekimi alanı için kesin sonucudur. Tozun yoğunluğu eksenin uzaklığıyla beraber arttığı için çözüm oldukça yapay olmakla kalmaz, aynı zamanda genel görelilikteki bilinen en basit çözümlerden olmakla beraber aynı zamanda Pedagojik olarak önemli örneklerden biri olarak gösterilir.

Einstein-Hilbert etkisi genel görelilikte en küçük eylem ilkesi boyunca Einstein alan denklemleri üretir. Hilbert etkisi genel görelilikte yerçekiminin dinamiğini tarifleyen fonksiyonel işlemdir. metrik işaretiyle, etkinin çekimsel kısmı,

<span class="mw-page-title-main">Stres-enerji tensörü</span>

Stres-enerji tensörü, fizikte uzayzaman içerisinde enerji ve momentumun özkütle ve akısını açıklayan, Newton fiziğindeki stres tensörünü genelleyen bir tensördür. Bu, maddedinin, radyasyonun ve kütleçekimsel olmayan kuvvet alanının bir özelliğidir. Stres-enerji tensörü, genel göreliliğin Einstein alan denklemlerindeki yerçekimi alanının kaynağıdır, tıpkı kütle özkütlesinin Newton yerçekiminde bu tip bir alanın kaynağı olması gibi.

Differansiyal geometri içerisinde,. gerçek olmayan Riemannia çok katlılarını ifade etmek için kullanılan eğriliktir. Genel Görelikte içerisinde, Einstein Tensör’ünün ortaya çıkardığı Einstein’nın alan denklemlerinin kütleçekimi için tanımladığı uzay-zaman eğriliğini tutarlı bir şekilde enerji ile açıklamasıdır.

<span class="mw-page-title-main">Elektrozayıf etkileşim</span>

Parçacık fiziğinde elektrozayıf etkileşim, doğanın bilinen iki veya dört temel etkileşiminin birleşimin bir tanımıdır: elektromanyetizm ve zayıf etkileşim. Her gün düşük enerjilerde, bu iki kuvvet çok farklı oluşsa da, teori modelleri aynı kuvvetin iki farklı etkisi gibidir. Yukarıdaki birleştirme enerjisi, yaklaşık 100 GeV, tek bir elektrozayıf kuvvet oluşturabilir. Bu yüzden, eğer evren yeterince sıcaksa (Big Bang'den kısa bir sonra olan bir sıcaklık ortalama 1015 K), elektromanyetik kuvvet ve zayıf kuvvet birleşmiş bir elektrozayıf kuvvete dönüşür. Elektrozayıf dönem boyunca, zayıf kuvvet güçlü kuvvetten ayrılır. Kuark dönem boyunca, elektrozayıf kuvvet elektromanyetik ve zayıf kuvvetten ayrılır.

Bu madde Vektör Analizi'ndeki önemli özdeşlikleri içermektedir.

Matematikte Radon-Nikodym teoremi, aynı ölçülebilir uzayda tanımlanmış iki ölçü arasındaki ilişkiyi ifade eden bir sonuçtur. Burada ölçü ile kastedilen ölçülebilir bir uzayın ölçülebilir alt kümelerine tutarlı bir büyüklük atayan bir küme fonksiyonudur. Ölçü örnekleri arasında alan ve hacim verilebilir.