İçeriğe atla

Deep Space 1

Deep Space 1
Deep Space 1'in sanatsal tasviri
Görev türüTeknoloji kanıtlama
UygulayıcıNASA / JPL
COSPAR kimliği1998-061A Bunu Vikiveri'de düzenleyin
SATCAT no.25508
Web sitesiJPL - Deep Space 1
Görev süresiYörüngede: 25 yıl, 11 ay, 21 gün
Uzay aracı özellikleri
ÜreticiOrbital Sciences Corporation
Fırlatma ağırlığı486 kg (1.071 lb)[1]
Yakıtsız ağırlık373 kg (822 lb)[1]
Boyutlar2,1 × 11,8 × 2,5 m (6,9 × 38,6 × 8,2 ft)
Güç2.500 watt[1]
Görev başlangıcı
Fırlatma tarihi24 Ekim 1998, 12:08 (24 Ekim 1998, 12:08) UTC[2]
RoketDelta II 7326[1]
Fırlatma yeriCape Canaveral SLC-17A[1]
Görev sonu
Tasfiye türüGörevden alındı
Devre dışı kalma18 Aralık 2001, 20:00 (18 Aralık 2001, 20:00) UTC[2]
9969 Braille uçuşu
En yakın yaklaşım29 Temmuz 1999, 04:46 UTC[2]
Mesafe26 km (16 mi)
19P/Borrelly uçuşu
En yakın yaklaşım22 Eylül 2001, 22:29:33 UTC[2]
Mesafe2.171 km (1.349 mi)

DS1 görev logosu  

Deep Space 1 (DS1), bir asteroit ve bir kuyruklu yıldızın yakınından uçuş gerçekleştiren NASA'nın teknoloji kanıtlama amaçlı bir uzay aracıydı. Gelişmiş teknolojileri test etmek için tahsis edilmiş Yeni Binyıl Programı'nın (New Millennium Program) bir parçasıydı.

24 Ekim 1998'de fırlatılan Deep Space 1 uzay aracı, ana bilimsel hedefi olan asteroit 9969 Braille'in yanından bir uçuş gerçekleştirdi. Görev, 19P/Borrelly kuyruklu yıldızıyla karşılaşmak ve ileri mühendislik testlerinin gerçekleştirilmesi amacıyla iki kez uzatıldı. İlk aşamalarındaki ve yıldız takipçisindeki yazılımsal sorunlar, görev yapılandırmasında sürekli değişikliklere yol açtı. Asteroit geçişi kısmi bir başarı olarak kalsa da, kuyruklu yıldızla karşılaşma sonucu değerli bilgiler elde edildi.

Deep Space serisi, Ocak 1999'da Mars Polar Lander üzerine bindirilerek fırlatılan ve Mars'ın yüzeyine çarpması amaçlanan (temas kopmuş ve görev başarısız olsa da) Deep Space 2 sondaları ile devam etti. Deep Space 1, geleneksel kimyasal roketler yerine İyon itici kullanan ilk NASA uzay aracıydı.[3]

Teknolojiler

Deep Space 1in amacı, gelecekteki görevler için teknoloji geliştirme ve doğrulamaydı. Bu amaçla 12 teknoloji test edildi:[4]

  1. Güneş Enerjili Elektrik Tahriği
  2. Güneş Yoğunlaştırıcı Dizileri
  3. Çok Fonksiyonlu Yapı
  4. Minyatür Entegre Kamera ve Görüntüleme Spektrometresi
  5. İyon ve Elektron Spektrometresi
  6. Küçük Derin Uzay Aktarıcısı
  7. Ka-Bant Katı Hal Güç Amplifikatörü
  8. Beacon Monitor İşlemleri
  9. Otonom Uzak Ajanı
  10. Düşük Güç Elektroniği
  11. Güç Çalıştırma ve Anahtarlama Modülü
  12. Otonom Navigasyon

Görev özeti

DS1'in Cape Canaveral SLC-17A'dan Delta II ile fırlatılması
24 Ekim 1998'den 31 Aralık 2003'e kadar DS1'(ler)‘in yörünge animasyonu
      Deep Space 1 ·       9969 Braille ·       Dünya ·       19P/Borrelly

Fırlatmadan önce Deep Space 1, kuyruklu yıldız 76P/West–Kohoutek–Ikemura ve asteroit 3352 McAuliffe'yi ziyaret etmeyi amaçlıyordu.[5] Gecikmeli fırlatma nedeniyle hedefler, asteroit 9969 Braille (o zamanlar 1992 KD olarak adlandırılırdı) ve 107P/Wilson–Harrington kuyruklu yıldızı olarak değiştirildi.[5] 28 Temmuz 1999'da, Braille asteroidinin 26 km uzağından geçti. Geçiş sırasında asteroidin bileşimi ve boyutları üzerine ölçümler yaptı, ayrıca güneş rüzgarının sapmalarını kontrol ederek bir manyetik alanın olası varlığını doğruladı. Bu ikinci görev tam olarak başarılı olmadı. Yaklaşma aşamasında bir yazılım sorunu nedeniyle beklemeye girdi. Bu sorun Dünya'dan çözüldüğünde, otonom seyrüsefer sistemi asteroidi doğru bir şekilde tanımlayamadı ve bu nedenle kaliteli fotoğrafların oluşturulmasını engelledi. Kalan ölçümler yararlı veriler verdi.[6] Ağustos 2002'de, başka bir genişletilmiş görev olarak asteroit 1999 KK1'in yanından geçmesi düşünüldü, ancak nihayetinde maliyet endişeleri nedeniyle gerçekleştirilmedi.[7][8] Görev sırasında Mars'ın yüksek kaliteli kızılötesi tayfları da alındı.[6][9]

Sonuçlar ve başarılar

Deep Space-1, 37 milyon km (23 milyon mi) uzaklıktayken Hale Teleskobu'ndan görüldüğü gibi

İyon tahrik motoru başlangıçta 4.5 dakikalık çalışmadan sonra arızalandı. Ancak daha sonra tekrar faaliyete geçirildi ve mükemmel bir performans sergiledi. Görevin başlarında, fırlatma aracının ayrılması sırasında çıkan malzeme, yakın aralıklı iyon çıkarma ızgaralarının kısa devreye girmesine neden oldu. Malzeme elektrik arkıyla aşındığı, gaz çıkışıyla süblimleştiği veya basitçe sürüklenmesine izin verildiği için kirlenme sonunda temizlendi. Bu, motorun bir motor onarım modunda tekrar tekrar çalıştırılmasıyla, sıkışan malzeme üzerinde ark oluşturarak başarıldı.[10]

İyon motoru egzozunun, radyo iletişimi veya bilim aletleri gibi diğer uzay aracı sistemlerine engel olacağı düşünülüyordu. PEPE dedektörlerinin, motordan bu tür etkileri izlemek için ikincil bir işlevi vardı. İticiden gelen iyon akışı, PEPE'nin yaklaşık 20 eV'nin altındaki iyonları gözlemlemesini engellemesine rağmen hiçbir girişim bulunmadı.

Başka bir arıza yıldız takipçisi'nin kaybıydı. Yıldız takipçisi, yıldız alanını dahili çizelgeleriyle karşılaştırarak uzay aracı konumunu belirler. MICAS kamerası yıldız takipçisinin yerini alacak şekilde yeniden programlandığında görev kurtarıldı. MICAS daha hassas olmasına rağmen, görüş alanı çok daha küçüktür ve daha büyük bir bilgi işleme yükü oluşturur. İronik olarak, yıldız takipçisi son derece güvenilir olması beklenen, kullanıma hazır bir bileşendi.[6]

Çalışan yıldız takipçisi olmadan, iyon tahriği geçici olarak askıya alındı. İtki süresinin kaybı, yanından geçen 107P/Wilson–Harrington kuyruklu yıldızın uçuş iptalini zorunlu kıldı.

Autonav sistemi ara sıra elle düzeltmeler gerektiriyordu. Çoğu sorun, Autonav'ın hedefleri yanlış tanımlamasına neden olarak kırınım artışlarına ve kamerada yansımalara neden olan daha parlak cisimler nedeniyle tanımlanması zor veya çok loş cisimlerin belirlenmesindeydi.

Remote Agent sistemi, uzay aracında simüle edilmiş üç arıza ile sunuldu ve her olayı doğru şekilde halletti.

  1. Remote Agent'ın üniteyi yeniden etkinleştirerek düzelttiği arızalı elektronik birim.
  2. Remote Agent'ın güvenilmez olarak algıladığı ve bu nedenle doğru şekilde göz ardı ettiği yanlış bilgi sağlayan başarısız sensör.
  3. "kapalı" konumda sıkışmış bir konum kontrol iticisi (uzay aracının yönünü kontrol etmek için küçük bir motor), Remote Agent tarafından algılandı ve o iticiye dayanmayan bir moda geçerek telafi edildi.

Genel olarak bu, tamamen otonom planlama, teşhis ve iyileşmenin başarılı bir gösterimini oluşturdu.

MICAS cihazı bir tasarım başarısıydı, ancak morötesi kanalı bir elektrik arızası nedeniyle başarısız oldu. Görevin ilerleyen saatlerinde, yıldız takipçisi arızasından sonra MICAS bu görevi de üstlendi. Bu, Borrelly kuyruklu yıldızı karşılaşması da dahil olmak üzere kalan görev sırasında bilimsel kullanımında sürekli kesintilere neden oldu.[11]

DS1 tarafından görüntülendiği gibi 9969 Braille
19P/Borrelly kuyruklu yıldızı, DS1'in en yakın yaklaşımından sadece 160 saniye önce görüntülendi

Asteroit 9969 Braille'in yanından geçişi yalnızca kısmi bir başarıydı. Deep Space 1, asteroitden yalnızca 56.000 km/sa (35.000 mph)'da uçuş gerçekleştirmeyi amaçlıyordu. Yaklaşmadan kısa bir süre önce bir yazılım sorunu da dahil olmak üzere teknik zorluklar nedeniyle, araç bunun yerine Braille‘e 26 km (16 mi) mesafeden geçti. Bu, ayrıca Braille'in daha düşük albedosu, asteroidin Autonav'ın kamerayı doğru yöne odaklaması için yeterince parlak olmaması ve fotoğraf çekiminin neredeyse bir saat geciktiği anlamına geliyordu.[6] Ortaya çıkan resimler hayal kırıklığı yaratacak kadar belirsizdi.

Ancak, Borrelly Kuyruklu Yıldızı'nın yanından geçişi büyük bir başarıydı ve kuyruklu yıldızın yüzeyinin son derece ayrıntılı görüntülerini gönderdi. Bu tür görüntüler, Giotto uzay aracı tarafından çekilen -- Halley Kuyruklu Yıldızı ‘nın önceki tek fotoğraflarından daha yüksek çözünürlükteydi. PEPE cihazı, kuyruklu yıldızın güneş rüzgarı etkileşiminin çekirdekten dengelendiğini bildirdi. Bunun kuyruklu yıldızın yüzeyine eşit olarak dağılmayan jetlerin emisyonundan kaynaklandığına inanılıyor.

Enkaz kalkanları olmamasına rağmen, uzay aracı kuyruklu yıldız geçişini sağlam bir şekilde atlattı. Bir kez daha seyrek kuyruklu yıldız jetleri uzay aracını işaret etmiyor gibiydi. "Deep Space 1" daha sonra uzay aracının donanım teknolojilerini yeniden denemeye odaklanan ikinci genişletilmiş görev aşamasına girdi. Bu görev aşamasının odak noktası iyon motor sistemleriydi. Sonunda konum kontrol iticileri için uzay aracının hidrazin yakıtı tükendi. Yüksek verimli iyon itici, ana tahrike ek olarak konum kumandası yapmak için yeterli miktarda iticiye sahipti ve böylece görevin devam etmesine izin verdi.[11]

Ekim sonu ve Kasım 1999 başlarında, uzay aracının Braille sonrası kıyı aşaması sırasında, “Deep Space 1”, MICAS cihazıyla Mars'ı gözlemledi. Bu çok uzak bir uçuş olmasına rağmen, alet gezegenin çoklu kızılötesi spektrumlarını almayı başardı.[6][9]

Mevcut durum

Deep Space 1 değerli bilim verilerini ve görüntülerini göndererek birincil ve ikincil hedeflerinde başarılı oldu. DS1'in iyon motorları 18 Aralık 2001'de yaklaşık 20:00:00 UTC'de kapatıldı ve bu da görevin sona erdiğinin işaretiydi. Gemide iletişim, gelecekte gemiye ihtiyaç duyulması durumunda aktif modda kalacak şekilde ayarlandı. Ancak, Mart 2002'de yeniden temas kurma girişimleri başarısız oldu.[11] Güneş'in yörüngesinde, Güneş Sistemi içinde durmaktadır.[2]

Ayrıca bakınız

Dış bağlantılar

Kaynakça

  1. ^ a b c d e "Deep Space 1 Asteroid Flyby" (PDF) (Press kit). NASA. 26 Temmuz 1999. 16 Kasım 2001 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 20 Kasım 2016. 
  2. ^ a b c d e "Deep Space 1". National Space Science Data Center. NASA. 5 Mayıs 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Kasım 2016. 
  3. ^ Siddiqi, Asif A. (2018). Beyond Earth: A Chronicle of Deep Space Exploration, 1958–2016 (PDF). NASA History Series (2. bas.). NASA. s. 2. ISBN 978-1-62683-042-4. LCCN 2017059404. SP-2018-4041. 6 Eylül 2020 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 30 Ekim 2021. 
  4. ^ "Advanced Technologies". NASA/Jet Propulsion Laboratory. 30 Ekim 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Kasım 2016. 
  5. ^ a b "Comet Space Missions". SEDS.org. 4 Ocak 2011 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Kasım 2016. 
  6. ^ a b c d e Rayman, Marc D.; Varghese, Philip (March–June 2001). "The Deep Space 1 Extended Mission" (PDF). Acta Astronautica. 48 (5–12): 693-705. Bibcode:2001AcAau..48..693R. doi:10.1016/S0094-5765(01)00044-3. 9 Mayıs 2009 tarihinde kaynağından (PDF) arşivlendi. 
  7. ^ Schactman, Noah (18 Aralık 2001). "End of the Line for NASA Probe". Wired. 17 Haziran 2008 tarihinde kaynağından arşivlendi. 
  8. ^ Rayman, Marc (18 Aralık 2001). "Mission Update". Dr. Marc Rayman's Mission Log. NASA/Jet Propulsion Laboratory. 13 Ağustos 2009 tarihinde kaynağından arşivlendi. 
  9. ^ a b "Deep Space 1: Mission Information". NASA. 29 Eylül 2003. 21 Şubat 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Kasım 2016. 
  10. ^ Rayman, Marc D.; Varghese, Philip; Lehman, David H.; Livesay, Leslie L. (July–November 2000). "Results from the Deep Space 1 Technology Validation Mission" (PDF). Acta Astronautica. 47 (2–9): 475-487. Bibcode:2000AcAau..47..475R. CiteSeerX 10.1.1.504.9572 $2. doi:10.1016/S0094-5765(00)00087-4. 15 Nisan 2012 tarihinde kaynağından (PDF) arşivlendi. 
  11. ^ a b c Rayman, Marc D. (2003). "The Successful Conclusion of the Deep Space 1 Mission: Important Results without a Flashy Title" (PDF). Space Technology. 23 (2): 185-196. 4 Kasım 2021 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 30 Ekim 2021. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">NASA</span> ABDde uzay programı çalışmalarından sorumlu kurum

NASA, Amerika Birleşik Devletleri'nin uzay programı çalışmalarından sorumlu olan kurum. 29 Temmuz 1958 tarihinde ABD Başkanı Dwight Eisenhower tarafından kurulmuştur. Daire, 1 Ekim 1958 tarihinden itibaren askerî amaçlardan ziyade sivil alanda barışçıl bir şekilde faaliyet göstermeye başlamıştır.

<span class="mw-page-title-main">Kuyruklu yıldız</span> Güneş’in yakınından geçerken ısınarak gaz açığa çıkarmaya başlayan, buzlu, küçük Güneş Sistemi cisimleri

Kuyruklu yıldız ya da kirlikartopu, Güneş’in yakınından geçerken ısınarak gaz açığa çıkarmaya başlayan, buzlu, küçük Güneş Sistemi cisimleridir. Bu gaz çıkışı, görünür bir atmosfer veya koma ve bazen de bir kuyruk oluşturur. Bu fenomenler, kuyruklu yıldızın çekirdeğine etki eden güneş radyasyonu ve güneş rüzgarı etkilerinden kaynaklanır. Kuyruklu yıldız çekirdek’lerinin büyüklüğü, birkaç yüz metreden ile onlarca kilometreye kadar değişir ve gevşek buz, kozmik toz ve küçük kayalık parçacıklardan oluşur. Kuyruk bir astronomik birim ötesine uzanabilirken, koma Dünya'nın çapının 15 katına kadar çıkabilir. Yeterince parlaksa, teleskop yardımı olmadan Dünya'dan kuyruklu yıldız görülebilir ve gökyüzünde 30°'lik bir alt açı yayı olabilir. Kuyruklu yıldızlar eski çağlardan beri birçok kültür ve din tarafından gözlemlenmiş ve kaydedilmiştir.

<i>Stardust</i> (uzay aracı)

Stardust, NASA tarafından 7 Şubat 1999'da fırlatılan 385 kilogram ağırlığındaki bir robotik uzay sondasıydı. Ana görevi, Wild 2 kuyruklu yıldızının saçından toz örnekleri elde edilmesinin yanı sıra, kozmik toz örnekleri toplamak ve bunları analiz için Dünya'ya getirmekti. Bu görev, türünün ilk örnek getirme göreviydi. Wild 2 kuyruklu yıldızına giderken yanından geçti ve asteroit 5535 Annefrank'ı inceledi. Ana görev, 15 Ocak 2006'da örnek getirme kapsülü Dünya'ya döndüğünde başarıyla tamamlandı.

<span class="mw-page-title-main">Voyager 1</span> Amerikan yapımı Dünyaya en uzak konumda olan beşeri nesne , uzay sondası

Voyager 1, Voyager programı kapsamında NASA tarafından dış Güneş Sistemi’ni ve Güneş'in heliosferinin ötesindeki yıldızlararası uzayı araştırmak için 5 Eylül 1977'de fırlatılan uzay sondasıdır. İkizi Voyager 2'den 16 gün sonra fırlatılan 722 kilogram ağırlığındaki Voyager 1, NASA tarafından fırlatıldığı 5 Eylül 1977'den bu yana hizmet vermek, düzenli komutları almak ve Dünya'ya veri iletmek için Derin Uzay Ağı ile iletişim kurmaya devam etmektedir. Jüpiter ve Satürn'ü ziyaret etmiş, bu gezegenlere ait uyduların detaylı fotoğraflarını elde eden ilk sonda olmuştur. Görevi hâlâ devam etmektedir. 15 Aralık 2023 itibarıyla sinyal alımı yapılamadığı iddia edilmektedir.

<span class="mw-page-title-main">İnsansız uzay gemisi</span> otomatik olarak uzayda uçabilen ve insansız uzay uçuşları için kullanılan uzay gemileri

İnsansız uzay gemisi ya da insansız uzay aracı, otomatik olarak uzayda uçabilen ve insansız uzay uçuşları için kullanılan uzay gemilerine verilen genel addır. Ne derece insanlardan bağımsız, yani özerk olduğu gemi modelleri arasında farklıdır. Uzaktan kumandalı, uzaktan güdümlü ya da tamamen özerk (robotik) olabilirler. Mesela Salyut 7, Mir ve UUİ'nun modülü Zarya, insansız uzaktan güdümlü şeklide istasyonu işletebilme, her iki yeniden ikmâl aracı ve yeni modüllerle kenetlenme imkânına sâhipti. En yaygın insansız uzay gemileri robotik uzay gemileri, insansız yeniden ikmâl araçları, uzay sondaları ve uzay rasathaneleridir. Her insansız uzay gemisi robotik olmamaktadır. Meselâ uzaya yollanan bir yansıtıcı top, robotik değildir.

<span class="mw-page-title-main">Herschel Uzay Gözlemevi</span>

Herschel Uzay Gözlemevi, Avrupa Uzay Ajansı (ESA) tarafından yapılmış ve işletilmiş bir uzay gözlemeviydi. 2009'dan 2013'e kadar faal olmuştur ve 2021'de James Webb Uzay Teleskobu'nun fırlatılışına kadar uzaya fırlatılan en büyük kızılötesi teleskoptu. 3,5 metrelik bir ayna ve uzak kızılötesi ve milimetre altı dalga boylarına (55–672 µm) hassas araçlar taşımıştır. Herschel, Avrupa Uzay Ajansı'nın Horizon 2000 programında SOHO/Cluster II, XMM-Newton ve Rosetta'yı takip eden dördüncü ve sonuncu köşe taşı görevdir. Amerika Birleşik Devletleri, NASA ile programa katılmıştır.

<i>Philae</i> (uzay aracı) Rosetta uzay aracına eşlik eden insansız Robotik Avrupa Uzay Ajansı iniş aracı

Philae, Avrupa Uzay Ajansı'nın robotik bir iniş aracıydı. Rosetta uzay aracının taşıdığı Philae, 12 Kasım 2014 tarihinde 67P/Churyumov–Gerasimenko kuyruklu yıldızına inerek bir kuyruklu yıldıza inen ilk uzay aracı oldu.

<i>Rosetta</i> (uzay aracı)

Rosetta, Avrupa Uzay Ajansı tarafından imal edilip 2 Mart 2004'te fırlatılan bir uzay sondasıydı. İniş modülü Philae ile birlikte 67P/Churyumov-Gerasimenko (67P) kuyruklu yıldızının ayrıntılı bir incelemesini gerçekleştirdi. Uzay aracı, kuyruklu yıldıza yaptığı yolculuk sırasında Dünya ve Mars gezegenleriyle, 21 Lutetia ve 2867 Šteins asteroitlerinin yakınından geçti. SOHO / Cluster ve XMM-Newton'dan sonra ESA'nın Horizon 2000 programının üçüncü temel taşı görevi olarak başlatılmıştı.

<i>Deep Impact</i> (uzay aracı)

Deep Impact, Cape Canaveral Uzay İstasyonu'ndan 12 Ocak 2005, 18.47 UTC'de fırlatılan bir NASA uzay sondasıydı. Bir çarpma aygıtı bırakarak Tempel 1 (9P/Tempel) kuyruklu yıldızının iç bileşimini incelemek amacıyla tasarlanmıştır. 4 Temmuz 2005, 05.52 UTC'de çarpma aygıtı kuyruklu yıldızın çekirdeğiyle başarılı bir şekilde çarpıştı. Çarpışma, çekirdeğin iç kısmındaki enkazı kazarak bir çarpma krateri oluşturdu. Uzay aracı tarafından çekilen fotoğraflar kuyruklu yıldızın beklenenden daha tozlu ve daha az buzlu olduğunu gösterdi. Çarpışma, beklenmedik derecede büyük ve parlak bir toz bulutu oluşturdu ve çarpma kraterinin görünümünü gizledi.

Aşağıdaki liste, uzay araçlarınca ziyaret edilmiş bütün küçük gezegen ve kuyruklu yıldızların listeler.

<span class="mw-page-title-main">Uzay aracı itki sistemi</span> Uzay aracını ivmelendirmeye yarayan her türlü yönteme verilen ad

Uzay aracı itki sistemi ya da Uzay aracı sevk sistemi, uzay aracını ve uyduları ivmelendirmekte kullanılan her türlü yönteme verilen addır. Pek çok farklı yöntem bulunmaktadır. Her yöntemin bazı sakıncaları ve üstün tarafı vardır ve uzay aracı sevki etkin bir araştırma alanıdır. Ancak, günümüzdeki pek çok uzay aracı, aracın arkasından/geri tarafından bir gazı roket motoru çıkışı yüksek hızda geçirmek suretiyle itki/sevk üretir. Bu çeşit bir motora roket motoru denmektedir.

<span class="mw-page-title-main">Elektrikle çalışan uzay aracı itki sistemi</span>

Elektrikle çalışan uzay aracı itki sistemi, uzay aracının hızını elektrik enerjisi kullanarak değiştirir. Bu Uzay aracı itki sistemi türündeki pek çok sistem, yakıtı elektrik kullanarak yüksek hızlarda araçtan atmak suretiyle çalışır, ancak örneğin elektrodinamik kablolar ise doğrudan gezegenin Manyetik alanıyla etkileşerek çalışırlar.

<i>Dawn</i> (uzay sondası)

Dawn, asteroit kuşağının bilinen üç proto-gezegeninden ikisi olan Vesta ve Ceres'i inceleme göreviyle NASA tarafından 2007 yılının Eylül ayında fırlatılan uzay sondasıydı. NASA'nın Discovery programı'nın dokuzuncu göreviyle Dawn uzay aracı, 16 Temmuz 2011'de Vesta yörüngesine girdi ve 2012'nin sonlarında Ceres'e hareket etmeden önce 14 aylık bir araştırma görevini tamamladı. 6 Mart 2015 tarihinde Ceres'in yörüngesine girdi. 2017 yılında NASA planlanan dokuz yıllık görevin, sondanın hidrazin yakıt kaynağı tükenene kadar uzatılacağını duyurdu. NASA 1 Kasım 2018 tarihinde Dawn'ın hidrazin yakıtını tükettiğini ve görevin sona erdiğini duyurdu. Uzay aracı halen Ceres'in etrafında kontrolsüz bir şekilde, fakat kararlı bir yörüngede dolanmaktadır.

<span class="mw-page-title-main">19P/Borrelly</span>

Borrelly kuyruklu yıldızı' veya Borrelly'nin kuyruklu yıldızı, 2001'de Deep Space 1 uzay aracı tarafından ziyaret edilen bir periyodik kuyruklu yıldız’dır. Kuyruklu yıldız en son 28 Mayıs 2015'te günberi'ye geldi ve daha sonra 1 Şubat 2022'de günberiye gelecektir.

<span class="mw-page-title-main">103P/Hartley</span> Bir kuyruklu yıldız

Küçük Gezegen Merkezi tarafından 103P/Hartley olarak adlandırılan Comet Hartley 2, yörünge periyodu 6.46 yıl olan küçük bir periyodik kuyruklu yıldızdır. Malcolm Hartley tarafından 1986'da Schmidt Teleskop Birimi, Siding Spring Rasathanesi, Avustralya'da keşfedildi. Çapının 12 ila 16 kilometre olduğu tahmin edilmektedir.

<span class="mw-page-title-main">Tempel 1</span>

Tempel 1, Wilhelm Tempel tarafından 1867'de keşfedilen bir periyodik Jüpiter-ailesi kuyruklu yıldızı’dır. Her 5.5 yılda bir Güneş yörüngesini tamamlar. Tempel 1, 2005 yılında kuyruklu yıldıza kasıtlı olarak yüksek hızlı çarpma fotoğrafını çeken Deep Impact uzay görevinin hedefiydi. 14 Şubat 2011'de Stardust uzay aracı tarafından tekrar ziyaret edildi ve Ağustos 2016'da günberiye geri döndü.

<span class="mw-page-title-main">Mariner 2</span>

Mariner 2, Venüs'e giden ve başarılı bir gezegen karşılaşması gerçekleştiren ilk ABD robotik uzay sondasıydı. NASA Mariner programı'ndaki ilk başarılı uzay aracı, Ranger programı'nın Blok I uzay aracının basitleştirilmiş bir versiyonu ve Mariner 1'in tam bir kopyasıydı. Mariner 1 ve 2 uzay aracının görevleri bazen Mariner R görevleri olarak bilinir. Orijinal planlar, sondaların Atlas-Centaur'da fırlatılmasını gerektiriyordu ancak bu araçla ilgili ciddi gelişim sorunları, çok daha küçük olan Agena B ikinci aşamaya geçişi zorunlu kıldı. Bu nedenle Mariner R araçlarının tasarımı büyük ölçüde basitleştirildi. Atlas-Agena B, Sovyet 8K78 güçlendiricisinin yalnızca yarısı kadar kaldırma kapasitesine sahip olduğundan, bu dönemin Sovyet Venera sondalarından çok daha az enstrümantasyon—örneğin, bir TV kamerasından vazgeçilerek— taşındı.

<span class="mw-page-title-main">Çift Asteroit Yönlendirme Testi</span>

Çift Asteroit Yönlendirme Testi, NASA'nın Dünya'ya yakın cisimlere karşı gezegen savunması yöntemini test etmeyi amaçladığı bir uzay göreviydi. Bu görev, bir uzay aracının bir asteroitle kafa kafaya çarpıştığında momentum aktarımı etkisinin asteroidi ne kadar saptırdığını değerlendirmek için tasarlandı. Seçilen hedef asteroit olan Dimorphos, Didymos asteroidinin uydusudur ve her iki asteroit de Dünya'ya bir çarpma tehdidi oluşturmamaktadır. 24 Kasım 2021'de Dünya'dan fırlatılan DART uzay aracı, 26 Eylül 2022 23:14 UTC'de Dimorphos'a başarılı bir şekilde çarptı ve yörüngesini 32 dakika kısalttı. Bu, önceden belirlenen başarı eşiği olan 73 saniyeden çok daha fazlaydı. DART'ın Dimorphos'u yönlendirmedeki başarısı çarpışmanın kendisinden çok, dışarı fırlatılan enkazın geri tepmesiyle ilişkili olan momentum aktarımı sayesinde oldu.

<span class="mw-page-title-main">Örnek getirme görevi</span> dünya dışındaki bir yerden örnekler toplanıp analiz için Dünyaya getirildiği bir uzay görevidir

Örnek getirme görevi, dünya dışındaki bir yerden örnekler toplayıp analiz için Dünya'ya getiren bir uzay aracı görevidir. Örnek getirme görevleri, yalnızca atomlar ve molekülleri veya gevşek malzeme ve kayalar gibi karmaşık bileşiklerden oluşmuş tortuyu geri getirebilir. Bu örnekler, toprak ve kayanın kazılması veya güneş rüzgarı parçacıkları ile kuyruklu yıldız birikintilerinin yakalanması için kullanılan bir toplayıcı paneli gibi çeşitli yollarla elde edilebilir. Bununla birlikte, bu tür örneklerin Dünya'ya getirilmesinin Dünya'nın kendisini tehlikeye atabileceğine dair endişeler dile getirilmiştir.

<span class="mw-page-title-main">WISE Teleskobu - Geniş Alan Kızılötesi Araştırma Gezgini</span> Geniş Sahalı Kızılötesi İnceleme Kaşifi. NASAnın Aralık 2009da fırlatılan uzay teleskopu. Onun gözlemleri, onbinlerce yeni asteroidin ve önceden keşfedilmemiş çok sayıda yıldız kümelerinin keşfini desteklemiştir.

Geniş Alan Kızılötesi Araştırma Gezgini, Explorers Programındaki bir NASA kızılötesi astronomi uzay teleskobudur. 14 Aralık 2009'da uzaya fırlatılmıştır. Planlanan görev süresinin dolması nedeniyle Şubat 2011'de hazırda bekleme moduna alınmış ancak 2013'te yeniden etkinleştirilmiştir. İkinci etkinleştirme Near-Earth Object Wide-field Infrared Survey Explorer, Dünya Yakını Objeler Geniş Alan Kızılötesi Araştırma Gezgini (NEOWISE) olarak yeniden adlandırılmaktadır. WISE bugüne kadar binlerce küçük gezegen ve çok sayıda yıldız kümesi keşfetti. Gözlemleri ayrıca ilk Y tipi kahverengi cücenin ve Dünya truva asteroidinin keşfini de destekledi.