İçeriğe atla

De Moivre formülü

Matematikte de Moivre formülü, 18. yüzyıl Fransız matematikçisi Abraham de Moivre anısına isimlendirilmiş ve herhangi bir karmaşık sayı (özellikle herhangi bir gerçel sayı x ve herhangi bir tam sayı n) için şu ifadenin geçerli olduğunu önerir:

Bu formülün önemi (burada önünde i sanal birim ifade ile verilmiş olan) karmaşık sayılar ile trigonometri arasındaki bağlantıyı açıklamasındadır.

Bu formülde "cos x + i sin x" bazen "cis x" olarak kısaltılabilir.

Formülün sol tarafi binom teoremi kullanarak açılıp gerçel kısmına ve sanal kısmına yeni şekil verilirse, cos(nx) ve sin(nx) için yalnızca sin(x) ve cos(x) kullanan uygulamalı matematikde çok önemli ifadeler elde edilir.

Bu formülün diğer bir uygulaması ise De Moivre sayısı adı verilen birimin köklerini (yani 1in köklerini) karmaşık sayılar (yani zn = 1 ise zkarmaşık sayıları) ile ifade edilmesini sağlamasıdır

Tarihi olarak başka şekilde ispat edilmekle beraber, de Moivre'in formülü Euler formülünü kullanarak hemen şöyle ispat edilebilir:

ve üstel yasaya göre

O halde Euler formülü ile,

. olur.

İndüksiyon ile ispat

Üç değişik hal ele alınabilir:

Eğer n > 0 ise, matematiksel tümevarım ile şöyle ilerleyebiliriz.

Eğer n = 1 ise, sonuç açıkça geçerlidir. Hipotezimiz için, sonucun bir tam sayı olan k için geçerli olduğunu varsayalım. Yani varsayımımız şu olsun:

Şimdi n = k + 1 halini ele alalım:

Bundan, eğer sonucun, n = k için geçerli olması halinde, n = k + 1 için de geçerli olduğu anlamına varılır. Öyle ise, matematik endüksiyon prensipine göre, tüm pozitif tam sayılar için (yani n≥1 için) bu sonuç geçerli olur.

Eğer n = 0 ise, olduğu için ve konvansiyonel olarak olarak verildiği için, bu formül geçerlidir.

Eğer n < 0 ise, n = -m olduğu zaman bir pozitif tam sayı m ele alsın. O halde

Böylelikle, teorem nin tüm tam sayı değerleri için geçerlidir.

Kosinus ve sinus için tek tek formüller

Karmaşık sayıların eşitliğini gösterdiği için bu denklemin hem gerçel kısımları hem de sanal kısımları ayrı ayrı birbirine eşit olmalıdır. Eğer x (ve bundan dolayı ve ) gerçel sayılar ise, o zaman bu kısımların özdeşlikleri (taraf değiştirilerek) şöyle yazılabilir:

Bu denklemler xin karmaşık değerleri için geçerlidir. Buna neden, her iki tarafın da x in holomorf fonksiyonları olması ve gerçel eksende birbiriyle çakışan bu şekildeki iki fonksiyonun karmaşık düzeyde de mutlaka birbiriyle çakışması gereğidir.

Bu denklemlerin örnek ifadeleri olarak ve için şu sonuçlar çıkarılır:

için formülün sağ tarafı gerçekte değerli Çebişev polinomu olan ifadesinin n(cosx) değeridir.

Genelleştirme

Bu formül yukarıda verilen hallerden daha geniş hallerde de geçerlidir. Eğer z ve w karmaşık sayılarsa, o halde

bir çokludeğerli fonksiyon olur ve

ise bir çokludeğerli fonksiyon olmaz. Böylece

ifadesi sunun bir parcasidir .

Uygulamalar

1 in küpköklerinin karmaşık düzlemde gösterimi

Bu formül bir karmaşık sayı için ninci kökleri bulmak için kullanılabilir. Eğer bir karmaşık sayı ise bu polar koordinatlı olarak şu şekilde yazılabilir:

O halde

olur. Burada tam sayıdır. için tane değişik kök bulmak için nin den e aralığını incelemek gerekir.

Ayrıca bakınız

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">Öz empedans</span>

Öz direnç (Empedans), maddenin kimyasal özelliğinden dolayı direncinin artması ya da azalmasına neden olan her maddeye özgü ayırt edici bir özelliktir. Farklı maddelerin empedansları aynı olabilir ama öz dirençleri aynı olamaz. R= Lq/Q dur. (Rezistif Direnç= Uzunluk*öz direnç/kesit, Alternatif akım'a karşı koyan zorluk olarak adlandırılır. İçinde kondansatör ve endüktans gibi zamanla değişen değerlere sahip olan elemanlar olan devrelerde direnç yerine öz direnç kullanılmaktadır. Öz direnç gerilim ve akımın sadece görünür genliğini açıklamakla kalmaz, ayrıca görünür fazını da açıklar. DA devrelerinde öz direnç ile direnç arasında hiçbir fark yoktur. Direnç sıfır faz açısına sahip öz direnç olarak adlandırılabilir.

<span class="mw-page-title-main">Trigonometrik fonksiyonlar</span>

Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

Aşağıdaki liste trigonometrik fonksiyonların integrallerini içermektedir. İntegral fonksiyonlarının tüm bir listesi için lütfen İntegral tablosu sayfasına bakınız.

<span class="mw-page-title-main">Gerçel kısım</span>

Matematikte, bir karmaşık sayısının gerçel kısmı, 'yi temsil eden gerçel sayıların sıralı çiftindeki ilk elemandır; yani ise veya denk bir şekilde ise, o zaman 'nin gerçel kısmı 'tir. İngilizce karşılığından esinlenerek, Re{z} ile veya Fraktür yazıtipindeki büyük R kullanılarak, yani {z} ile gösterilir. 'yi, 'nin gerçel kısmına gönderen karmaşık fonksiyon holomorf değildir.

Matematikte Abel testi sonsuz bir serinin yakınsaklığını belirlemek için kullanılan bir yöntemdir. Bu test matematikçi Niels Abel'e ithafen bu şekilde isimlendirilmiştir. Abel testinin farklı iki çeşidi vardır – birisi gerçel sayıların serileriyle kullanılır; diğeri ise karmaşık analizdeki kuvvet serileriyle kullanılır.

Karmaşık analizde kontür integrali veya kontür integrali almak karmaşık düzlemdeki yollar boyunca belli integralleri bulmak için kullanılan bir yöntemdir.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

<span class="mw-page-title-main">Euler formülü</span>

Adını matematikçi Leonhard Euler'den alan Euler formülü karmaşık analizde kullanılan bir matematik formülüdür ve trigonometrik fonksiyonlarla karmaşık üstel fonksiyon arasındaki bağlantıyı gösterir.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

<span class="mw-page-title-main">Kuvvet serisi</span>

Matematikte kuvvet serisi

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

Paramanyetik bir malzemede, malzemenin mıknatıslanması genel olarak uygulanan manyetik alanla orantılıdır. Fakat eğer malzeme ısıtılırsa, bu oran düşer: Belirli bir sıcaklığa kadar, mıknatıslanma sıcaklıkla ters orantılıdır. Bu kavram “Curie Yasası” tarafından kapsanmaktadır:

<span class="mw-page-title-main">Duran dalga</span>

Fizikte duran dalgalar, zamana göre salınım yapmasına rağmen belli bir bölgede sabit duran dalgalardır. Bu dalgaların uzayda herhangi bir noktadaki maksimum genliği zamana göre sabittir ve salınımları eş fazdadır. Bir duran dalgada genliğin minimum kaldığı noktalar düğüm (node), maksimum olduğu noktalar ise anti-düğüm (anti-node) olarak bilinir.

Aşağıdaki matematiksel seriler listesi, sonlu ve sonsuz toplamlar için formüller içerir. Toplamları değerlendirmek için diğer araçlarla birlikte kullanılabilir.

<span class="mw-page-title-main">Parametrik denklem</span>

Matematikte, bir parametrik denklem, bir grup niceliği parametreler olarak adlandırılan bir veya daha fazla bağımsız değişkenin fonksiyonları olarak tanımlar. Parametrik denklemler genellikle bir eğri veya yüzey gibi geometrik bir nesneyi oluşturan noktaların koordinatlarını ifade etmek için kullanılır ve sırasıyla parametrik eğri ve parametrik yüzey olarak adlandırılır. Bu gibi durumlarda, denklemler, toplu olarak nesnenin parametrik temsili veya parametrik sistem, veya parametrelendirilmesi olarak adlandırılır.

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.

<span class="mw-page-title-main">Pisagor trigonometrik özdeşliği</span> sin² θ + cos² θ = 1

Pisagor trigonometrik özdeşliği, daha basit ifadeyle Pisagor özdeşliği olarak da adlandırılır, Pisagor teoremini trigonometrik fonksiyonlar cinsinden ifade eden bir özdeşliktir. Açıların toplam formülleri ile birlikte, sinüs ve kosinüs fonksiyonları arasındaki temel bağıntılardan biridir. Özdeşlik şu şekildedir: