İçeriğe atla

De Gua teoremi

köşesinde bir dik açıya sahip dört yüzlü

Adını Fransız matematikçi Jean Paul de Gua de Malves'den alan De Gua teoremi, Pisagor teoreminin üç boyutlu bir analojisidir.

Açıklama

Bir dört yüzlünün dik açılı bir köşesi varsa (bir küpün köşesi gibi), o zaman dik köşenin karşısındaki yüzün alanının karesi, diğer üç yüzün alanlarının karelerinin toplamına eşittir.

Genellemeler

Pisagor teoremi ve de Gua teoremi dik köşe açılı n-simpleks (n = 2, 3) hakkındaki genel bir teoremin özel durumlardır. Bu da Donald R. Conant ve William A. Beyer'in[1] daha genel bir teoreminin özel bir durumudur ve aşağıdaki gibi ifade edilebilir.

U, 'nin ( olmak üzere) k-boyutlu afin alt uzayının ölçülebilir bir alt kümesi olsun. Tam olarak k elemanlı herhangi bir alt kümesi için, U'nun doğrusal açıklığı üzerine ortogonal izdüşümü olsun, burada ve için standart taban (doğal taban)dır. Sonra,

burada U'nun k-boyutlu hacmi ve toplam k elementli tüm alt kümeler üzerindedir.

De Gua'nın teoremi ve dik köşe açılı n-simpliklere genellemesi (yukarıda), k = n-1 ve U’nun koordinat eksenlerinde köşeleri olan 'de bir (n−1)-simpleks olduğu özel duruma karşılık gelir. Örneğin, n = 3, k = 2 ve U içinde A, B ve C köşeleri sırasıyla , ve eksenlerinde yer alan üçgenidir. 'ün tam olarak 2 elemanlı alt kümeleri , , ve 'dir. Tanım olarak, 'nin -düzleminde ortogonal izdüşümüdür, yani köşeleri O, B ve C olan üçgenidir, burada O ''ün orjinidir. Benzer şekilde, ve olup, Conant-Beyer teoremi aşağıdaki gibi ifade edilir;

bu ise de Gua teoremidir.

De Gua teoreminin dik köşe açılı n-simplekslere genelleştirilmesi de Cayley-Menger determinat formülünün özel bir durumu olarak elde edilebilir.

Tarihçe

Jean Paul de Gua de Malves (1713-1785), bu teoremi 1783'te yayınladı, ancak aynı zamanda teoremin biraz daha genel bir versiyonu başka bir Fransız matematikçi Charles de Tinseau d'Amondans (1746-1818) tarafından da yayınlandı. Ancak teorem, Johann Faulhaber (1580-1635) ve René Descartes (1596-1650) tarafından çok daha önce biliniyordu.[2]

Teoremin İspatı

İspat 1

Bir köşesi dik açılı olan bir dört yüzlü verilsin. Dik açılı köşeye dokunan üç yüzün alanları ve dik açılı köşenin karşısındaki "hipotenüs yüzü" alanı şeklinde etiketlensin, De Gua teoremi aşağıdaki eşitliği ifade etmektedir:

.

Bu ispatta Heron formülünü kullanacağız. Heron formülü, bir üçgenin alanını kenar uzunlukları cinsinden verir. Kenarları ve yarı çevresi olan bir üçgenin alanı aşağıdaki şekilde bulunur:

.

De Gua teoremi bağlamında, dört yüzlünün altı bacağı, ve şeklinde etiketlensin. Burada , dik açılı köşeden çıkan bacaklar ve ise hipotenüs yüzünün üç kenarıdır.

Dik açılı köşeye temas eden üç yüzün alanları sırasıyla;

'dir.

Heron formülünü kullanarak hipotenüs yüzünün alanı aşağıdaki şekilde hesaplanır:

.

Bunu bazı cebirsel işlemlerle aşağıdaki şekilde genişletebiliriz.

.

Şimdi, Pisagor teoremini kullanarak elde edebileceğimiz uzunluklar,

olarak hesaplanır.

Ve böylece terimleri yerine koyup sadeleştirerek aşağıdaki ifadeyi elde ederiz:

ve teorem kanıtlanmış olur.

İspat 2

OA, OB, OC kenarlarının ilgili uzunlukları a, b, c olsun.

Dört yüzlü tarafından kesilen şeklin iç hacmi, abc/6 = c/3 = b/3 = a/3 aynı zamanda h, ABC yüzü ile ilişkili yüksekliği göstermek üzere h/3 'ye eşittir.

vektörü gibi ABC düzlemine normaldir, bu yükseklik ile gösterilir.

Dolayısıyla, hacimleri eşitleyerek: . Ve basitleştirerek 'ye yani istenen formüle ulaşılır.

Notlar

  1. ^ Donald R Conant (Mar 1974). "Generalized Pythagorean Theorem". The American Mathematical Monthly. Mathematical Association of America. 81 (3): 262-265. doi:10.2307/2319528. 
  2. ^ Howard Whitley Eves: Great Moments in Mathematics (before 1650).

Kaynakça

Konuyla ilgili yayınlar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Üçgen</span> üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimi

Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.

<span class="mw-page-title-main">Vektör</span> büyüklüğü (veya uzunluğu) ve yönü olan geometrik nesne

Matematik, fizik ve mühendislikte, Öklid vektörü veya kısaca vektör sayısal büyüklüğü ve yönü olan geometrik bir objedir. Vektör, genellikle bir doğru parçası ile özdeşleştirilir. Bir başlangıç noktası A ile bir uç noktası B'yi birleştiren bir ok şeklinde görselleştirilir ve ile belirtilir.

<span class="mw-page-title-main">Isı transferi</span> Isıl enerjinin fiziksel sistemlerde taşınımı

Isı aktarımı, sıcaklıkları farklı iki veya daha fazla nesne arasında iletim, taşınım ya da ışınım yoluyla gerçekleşen enerji aktarımının incelenmesidir. Bu transferin matematiksel olarak modellenmesi ısı aktarımı dersinin temel konusunu oluşturur. Termodinamik, akışkanlar mekaniği ve malzeme ile ilişkilidir.

Planck sabiti (h), bir fizik sabitidir ve kuantum mekaniğindeki aksiyonum kuantumu için kullanılır. Değeri h= 6.62607015×10−34 J⋅s' dir. Planck sabiti daha önceleri bir Fotonun enerjisi (E) ile elektromanyetik dalgasının frekansı (ν) arasında bir orantı idi. Enerji ile frekans arasındaki bu ilişki Planck ilişkisi veya Planck formülü olarak adlandırılır:

<span class="mw-page-title-main">Ceva teoremi</span> Öklid düzlem geometrisinde bir üçgenin kenar doğru parçası çiftlerinin çarpımlarının oranının bire eşit olduğunu belirten teorem

Ceva Teoremi, herhangi bir ABC üçgeni verildiğinde, A, B ve C'den üçgenin zıt kenarlarına doğru olan doğru parçalarının üçgenin her iki kenarında oluşan doğru parçası çiftlerinin oranlarının çarpımı 1'e eşit olduğunda tek noktada kesiştiğini belirtir. Teorem adını İtalyan matematikçi Giovanni Ceva'dan alır.

Matematiğin bir alt dalı olan karmaşık analizde, Liouville teoremi tam fonksiyonların sınırlılığıyla ilgili temel bir teoremdir.

<span class="mw-page-title-main">Menelaus teoremi</span> Bir üçgenin her bir kenar doğrusundan tepe noktası olmayan birer nokta olmak üzere üç noktanın, ancak ve ancak her üç kenar doğrusu üzerinde belirledikleri işaretli oranların çarpımı -1 ise eş doğrusal olduğunu belirten Öklid geometri

İskenderiyeli Menelaus'a izafe edilen Menelaus teoremi düzlemsel geometride üçgenler üzerine bir teoremdir. , ve noktalarından oluşan üçgeninde , ve doğruları üzerinde bulunan ve üçgenin köşelerinden ayrık , ve noktalarının aynı doğru üzerinde olabilmesi ancak ve ancak:

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<span class="mw-page-title-main">Açıortay teoremi</span> Bir üçgeni bölen iki parçanın göreli uzunlukları hakkında

Geometride açıortay teoremi, bir üçgenin kenarının karşı açıyı ikiye bölen bir çizgiyle bölündüğü iki parçanın göreli uzunluklarıyla ilgilidir. Göreli uzunluklarını, üçgenin diğer iki kenarının göreli uzunluklarına eşitler.

<span class="mw-page-title-main">Pappus'un alan teoremi</span> rastgele bir üçgenin üç kenarına iliştirilmiş üç paralelkenarın alanları arasındaki ilişkiyi verir

Pappus'un alan teoremi, verilen herhangi bir üçgenin üç kenarına yaslanmış üç paralelkenarın alanları arasındaki ilişkiyi tanımlar. Pisagor teoreminin bir genellemesi olarak da düşünülebilecek teorem, adını onu keşfeden Yunan matematikçi İskenderiyeli Pappus'tan almıştır.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

<span class="mw-page-title-main">Bottema teoremi</span>

Bottema teoremi, Hollandalı matematikçi Oene Bottema tarafından matematik literatürüne kazandırılmış olan düzlem geometride bir teoremdir.

Carnot teoremi, bir üçgenin iç teğet çemberi ve çevrel çemberinin yarıçaplarının uzunlukları ile çevrel çemberin merkezinden üçgenin üç kenarına olan mesafelerin toplamı arasındaki ilişkiyi göstermektedir. Fransız matematikçi Lazare Nicolas Marguerite Carnot tarafından bulunmuştur.

<span class="mw-page-title-main">Eş iç teğet çemberler teoremi</span>

Geometride, eş iç teğet çemberler teoremi bir Japon Sangaku'sundan türetilir ve aşağıdaki yapıya ilişkindir: belirli bir noktadan belirli bir çizgiye bir dizi ışın çizilir, öyle ki bitişik ışınlar ve taban çizgisi tarafından oluşturulan üçgenlerin iç teğet çemberleri eşittir. Çizimde eş mavi çemberler, açıklandığı gibi ışınlar arasındaki mesafeyi tanımlar.

Öklid geometrisinde, Erdős–Mordell eşitsizliği herhangi bir üçgeni ve içindeki noktası için, 'den kenarlara olan uzunlukların toplamının, 'den köşelere olan uzunlukların toplamının yarısına eşit veya daha az olduğunu belirten teoremdir. Teorem, adını Macar matematikçi Paul Erdős ve Amerika doğumlu İngiliz matematikçi Louis Mordell'den almıştır. Erdős (1935) eşitsizliği kanıtlama problemini ortaya attı; iki yıl sonra tarafından bir kanıt sağlandı. Ancak bu çözüm çok basit değildi. Sonraki basit ispatlar daha sonra Kazarinoff (1957), Bankoff (1958) ve Alsina & Nelsen (2007) tarafından verilmiştir.

<span class="mw-page-title-main">Euler teoremi (geometri)</span>

Geometride, Euler teoremi, üçgenin çevrel çemberinin merkezi ve iç teğet çemberinin merkezi arasındaki uzunluğunun aşağıdaki şekilde ifade edildiğini belirtir:

<span class="mw-page-title-main">Feuerbach noktası</span>

Üçgen geometrisinde, üçgenin iç çemberi ve dokuz nokta çemberi, üçgenin Feuerbach noktasında birbirine içten teğettir. Feuerbach noktası bir üçgen merkezidir, yani tanımı üçgenin yerleşimine ve ölçeğine bağlı değildir. Clark Kimberling'in Üçgen Merkezleri Ansiklopedisi'nde X(11) olarak listelenmiştir ve adını Alman geometrici Karl Wilhelm Feuerbach'tan almıştır.

<span class="mw-page-title-main">Finsler–Hadwiger teoremi</span> Bir tepe noktasını paylaşan herhangi iki kareden türetilen üçüncü bir kareyi açıklar

Finsler–Hadwiger teoremi, bir tepe noktasını paylaşan herhangi iki kareden türetilen üçüncü bir kareyi tanımlayan Öklid düzlem geometrisindeki ifadedir. Teorem adını, üçgenin kenar uzunlukları ve alanıyla ilgili Hadwiger-Finsler eşitsizliğini yayınladıkları makalenin bir parçası olarak 1937'de yayınlayan Alman ve İsviçreli matematikçi Paul Finsler ile İsviçreli matematikçi Hugo Hadwiger'den almıştır.

<span class="mw-page-title-main">Geometrik ortalama teoremi</span> Dik üçgenler hakkında bir teorem

Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.

<span class="mw-page-title-main">Ters Pisagor teoremi</span> Öklid geometrisinde dik üçgenlerle ilgili bir teorem

Geometride, ters Pisagor teoremi aşağıdaki gibidir: