İçeriğe atla

Değişmeli cebir

Değişmeli cebirin öncülerinden biri olan Emmy Noether'den E. Fischer'e değişmeli cebir alanındaki çalışmalarını tartışan 1915 tarihli bir kartpostal.

İlk olarak ideal teori olarak bilinen Komütatif (değişmeli) cebir, cebirin değişmeli halkalarını, halkaların ideallerini ve bu halkalar üzerindeki modülleri inceleyen dalıdır. Hem cebirsel geometri hem de cebirsel sayı teorisi değişmeli cebire dayanır. Değişmeli halkaların öne çıkan örnekleri arasında polinom halkaları; sıradan tamsayılar dahil olmak üzere cebirsel tam sayı halkaları  ; ve p -sel tam sayıları içerir.[1]

Değişmeli cebir şemaların yerel çalışmasında ana teknik araçtır.

Mutlaka değişmeli olmayan halkaların incelenmesi, değişmeli olmayan cebir olarak bilinir; halka teorisini, gösterim teorisini ve Banach cebirleri teorisini içermektedir.

Kaynakça

  1. ^ Atiyah and Macdonald, 1969, Chapter 1

Kaynakça

  • Introduction to Commutative Algebra. CRC Press. 2018 [1969]. ISBN 978-0-429-96218-9. 
  • "Chapters 1–7". Commutative algebra. Elements of Mathematics. Springer. 1998 [1989]. ISBN 3-540-64239-0.  Yazar |ad1= eksik |soyadı1= (yardım)
  • "Chapitres 8 et 9". Algèbre commutative. Éléments de mathématique. Springer. 2006 [1983]. ISBN 978-3-540-33942-7.  Yazar |ad1= eksik |soyadı1= (yardım)
  • Eisenbud, David (1995). Commutative algebra with a view toward algebraic geometry. Graduate Texts in Mathematics. 150. New York: Springer-Verlag. xvi+785. ISBN 0-387-94268-8. 
  • Algèbre commutative, cours et exercices corrigés. 2e. Dunod. 2001. ISBN 2-10-005779-0.  Yazar |ad1= eksik |soyadı1= (yardım)
  • Introduction to Commutative algebra and algebraic geometry. Birkhauser. 1985. ISBN 0-8176-3065-1.  Yazar |ad1= eksik |soyadı1= (yardım)
  • Commutative algebra. Mathematics Lecture Note Series. 56. Benjamin/Cummings. 1980. ISBN 0-8053-7026-9.  Yazar |ad1= eksik |soyadı1= (yardım)
  • Commutative Ring Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press. 1989. ISBN 0-521-36764-6.  Yazar |ad1= eksik |soyadı1= (yardım)
  • Local rings. Interscience Tracts in Pure and Applied Mathematics. 13. Interscience. 1975 [1962]. ISBN 978-0-88275-228-0. OCLC 1137934.  Yazar |ad1= eksik |soyadı1= (yardım)
  • Undergraduate Commutative Algebra. London Mathematical Society Student Texts. Cambridge University Press. 1996. ISBN 978-0-521-45889-4. 3 Şubat 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 9 Haziran 2023.  Yazar |ad1= eksik |soyadı1= (yardım)
  • Local algebra. Springer Monographs in Mathematics. Chin, CheeWhye tarafından çevrildi. Springer. 2000. ISBN 3-540-66641-9.  Yazar |ad1= eksik |soyadı1= (yardım)
  • Steps in commutative algebra. London Mathematical Society Student Texts. 51. Cambridge University Press. 2000. s. 2000. ISBN 0-521-64623-5.  Yazar |ad1= eksik |soyadı1= (yardım)
  • Commutative algebra. Graduate Texts in Mathematics. 28. Springer. 1975. ISBN 978-0-387-90171-8. 3 Şubat 2023 tarihinde kaynağından arşivlendi. Erişim tarihi: 1 Haziran 2023.  Vol II. 29. 1975. ISBN 978-0-387-90089-6. 28 Ekim 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 1 Haziran 2023. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Tam sayı</span> sıfırın sağında bulunan sayılar büyükken solunda bulunan sayılar küçüktür

Tam sayılar, sayılar kümesinde yer alan sıfır (0), pozitif yönde yer alan doğal sayılar ve bunların negatif değerlerinden oluşan negatif sayılardan oluşan sayı kümesidir.

<span class="mw-page-title-main">Leopold Kronecker</span> Sayılar teorisi ve cebir üzerine çalışan Alman matematikçi (1823-1891)

Leopold Kronecker sayı teorisi, cebir ve mantık üzerine çalışan bir Alman matematikçiydi. Georg Cantor'un küme teorisi üzerine çalışmalarını eleştirdi ve Weber (1893) tarafından "Almanca: Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk " söylemiyle alıntılandı. Kronecker, Ernst Kummer'in öğrencisi ve ömür boyu arkadaşıydı.

Cebir sayılar teorisini, geometriyi ve analizi içine alan geniş bir matematik dalıdır. Temel matematik işlemlerinden, çember ve daire alanları bulmayı kapsayan geniş bir ilgi alanına sahiptir. Cebir, mühendislik ve eczacılık gibi birçok alanda kullanılmaktadır. Kuramsal cebir, ileri matematiğin bir dalı olmakla birlikte sadece uzmanlar tarafından çalışılan bir koldur.

<span class="mw-page-title-main">Soyut cebir</span> Matematiğin bir alanı

Soyut cebir veya soyut matematik, matematiğin bir alanı olup, cebirsel yapılar üzerinde çalışır. Cebirsel yapılar, elemanları üzerinde belirli işlemlerin uygulandığı kümelerdir ve gruplar, halkalar, alanlar, modüller, vektör uzayları, kafesler ve alan üzerindeki cebirler içerir. Soyut cebir terimi, 20. yüzyılın başlarında temel cebirden ayırmak amacıyla türetilmiştir. Soyut cebir ileri matematik için temel hale geldikçe basitçe "cebir" olarak adlandırılırken, "soyut cebir" terimi pedagoji dışında nadiren kullanılır.

<span class="mw-page-title-main">Lineer cebir</span> Uzay matematiği

Doğrusal cebir ya da lineer cebir; matematiğin, vektörler (yöney), vektör uzayları, doğrusal dönüşümler, doğrusal denklem takımları ve matrisleri (dizey) inceleyen alanıdır. Vektör uzayları, modern matematiğin merkezinde yer alan bir konudur. Bundan dolayı doğrusal cebir hem soyut cebirde hem de fonksiyonel analizde sıkça kullanılır. Doğrusal cebir, analitik geometri ile de alakalı olup sosyal bilimlerde ve fen bilimlerinde yaygın bir uygulama alanına sahiptir.

<span class="mw-page-title-main">Halka</span>

Halka, matematikte cebirin temel yapılarından biridir ve soyut cebirde tam sayıların soyutlamasıdır. Bu yapıyı işleyen dala halka kuramı denir. Halkalar diğer bir temel yapı olan grupların üzerine inşa edilir. Her halka, aynı zamanda değişmeli bir gruptur, ama bir halkadan daha fazla özelliği sağlaması istenir. Örneğin halkada grup işlemine ek olarak ikinci bir işlem daha vardır. Halkalara örnek olarak tam sayılar, modülo n sayılar, polinomlar ya da karmaşık sayılar verilebilir.

Matematikte değişme özelliği, terimlerin sırasının değişmesiyle sonucun değişmediği ikili işlemlere özgü bir özelliktir. Birçok ikili işlemin temel bir özelliği olmasının yanı sıra, birçok matematiksel ispat da buna dayanır. En sık olarak, "3 + 4 = 4 + 3" ya da "2 × 5 = 5 × 2" gibi ifadelerin açıklanmasında rastlanılsa da, daha ileri düzey durumlarda da kullanılabilir.

<span class="mw-page-title-main">Temsil teorisi</span>

Temsil teorisi soyut cebirdeki cebirsel yapıları, daha somut olan matematiksel nesnelerin dönüşümleri olarak tasvir etmeye çalışan bir matematik dalıdır. Örneğin soyut bir grubunu bir vektör uzayı 'nin eşyapı dönüşüm grubunun() içinde görmeye çalışır. Böyle temsillere doğrusal temsil denir, çünkü bu temsil aslında grubundan genel lineer grup 'ye bir morfizma yazmak demektir. Böyle bir temsil bulmaktaki amaç, grubunu çalışmak için lineer cebir kullanmaktır. Soyut gruplardaki çarpma işlemi, özellikle bir bilgisayar için matris çarpmasından daha zordur. Soyut bir grubun doğrusal temsillerini kullanarak, gruptaki kimi hesaplamaları bilgisayara yaptırmak daha kolay olur.

<span class="mw-page-title-main">André Weil</span> Fransız matematikçi (1906 – 1998)

André Weil, sayılar teorisi ve cebirsel geometri alanındaki çalışmaları ile tanınan Fransız matematikçidir. Matematiksel Bourbaki grubunun kurucu üyesiydi. Filozof Simone Weil kız kardeşi, yazar Sylvie Weil ise kızıdır.

Dilfirib Kadınefendi, Osmanlı İmparatorluğu Sultanı V. Mehmed'in beşinci eşidir.

<span class="mw-page-title-main">Yuri Manin</span> Rus matematikçi (1937–2023)

Yuri İvanoviç Manin, cebirsel geometri ve diyofant geometri alanındaki çalışmaları ve matematiksel mantıktan teorik fiziğe kadar birçok açıklayıcı çalışmasıyla tanınmış bir Rus matematikçidir. Ayrıca Manin, 1980 yılında Computable and Uncomputable adlı kitabıyla kuantum bilgisayar fikrini ilk önerenlerden birisidir.

1770 Büyük Bengal kıtlığı, 1769 ile 1770 yılları arasında Bengal ve Bihar'ı vuran ve yaklaşık 30 milyon insanı etkileyen bir kıtlıktı. Bengal'de ikili bir yönetim döneminde meydana geldi. Doğu Hindistan Şirketi'ne Delhi'deki Babür imparatoru tarafından diwani veya Bengal'de gelir toplama hakkı verildikten sonra ve devam eden nizamatı veya sivil yönetimin kontrolünü ele geçirmeden önce ortaya çıktı.

Matematikte, değişmeli grup olarak da adlandırılan Abel grubu, grup işleminin iki grup öğesine uygulanmasının sonucunun yazıldıkları sıraya bağlı olmadığı bir gruptur. Yani grup işlemi değişmelidir. Bir işlem olarak toplamayla tamsayılar ve gerçek sayılar değişmeli grupları oluşturur ve değişmeli grup kavramı bu örneklerin bir genellemesi olarak görülebilir. Abel grupları, 19. yüzyılın başlarındaki matematikçi Niels Henrik Abel'in adını ithafen adlandırılmıştır.

Matematikte homoloji, değişmeli gruplar veya modüller gibi bir dizi cebirsel nesneyi topolojik uzaylar gibi matematiksel nesnelerle ilişkilendirmenin genel bir yoludur. Homoloji grupları özgün olarak cebirsel topolojide tanımlanmıştır. Soyut cebir, gruplar, Lie cebirleri, Galois teorisi ve cebirsel geometri gibi çok çeşitli başka alanlarda da benzer yapılar mevcuttur.

Cebirde halka teorisi, toplama ve çarpmanın tanımlandığı ve tamsayılar için tanımlanan işlemlere benzer özelliklere sahip cebirsel yapılar olan halkaların incelenmesidir. Halka teorisi; halkaların yapısını, temsillerini veya farklı dillerde modülleri, özel halka sınıflarını ve homolojik özellikler ve polinom özdeşlikleri gibi uygulamaları inceler.

<span class="mw-page-title-main">Homolojik cebir</span>

Homolojik cebir, homolojiyi genel cebirsel ortamda inceleyen matematiğin bir dalıdır. Kökenleri, özellikle Henri Poincaré ve David Hilbert tarafından 19. yüzyılın sonlarında kombinatoryal topoloji ve soyut cebir araştırmalarına dayanan nispeten genç bir disiplindir.

Matematikte, değişmeli halka, çarpma işleminin değişmeli olduğu bir halkadır. Değişmeli halkaların incelenmesine değişmeli cebir denir. Değişmeli olmayan cebirse, değişmeli halkalara özgü olmayan halka özelliklerinin incelenmesidir. Bu ayrım değişmeli olmayan halkalara uzanmayan değişmeli halkaların temel özelliklerinin çok sayıda olmasından kaynaklanır.

<span class="mw-page-title-main">Analitik sayı teorisi</span>

Matematikte analitik sayı teorisi, tam sayılarla ilgili problemleri çözmek için matematiksel analiz yöntemlerini kullanan sayılar teorisinin dalıdır. Dirichlet'in aritmetik ilerlemeler üzerindeki teoreminin ilk kanıtını sunmak için Peter Gustav Lejeune Dirichlet tarafından 1837'de Dirichlet L - fonksiyonlarının tanıtılmasıyla kullanılmaya başlandığı söylenir. Asal sayılar ve toplam sayı teorisi üzerindeki sonuçlarıyla bilinmektedir.

Matematikte, cebirsel sayı alanı rasyonel sayılar alanının sonlu derecede bir uzantısıdır. rasyonel sayılar alanının alan uzantısı iken sonlu dereceye sahiptir. Burada derece alanın bir vektör uzayı üzerindeki boyutunu ifade eder. Cebirsel sayı alanları, rasyonel sayıların alanının cebirsel alan uzantısı olduğundan, rasyonel sayıları içerir ve rasyonel sayılar üzerinde bir vektör uzayı olarak düşünüldüğünde sonlu boyuta sahiptir.

<span class="mw-page-title-main">Kategori (matematik)</span> cebir kavramı

Matematikte, bir kategori, "oklar" ile birbirine bağlanan "nesneler" koleksiyonudur. Bir kategorinin iki temel özelliği vardır. Bunlar okları birleşmeli olarak oluşturma yeteneği ve her nesne için bir birim okunun varlığıdır. Basit bir örnek; nesneleri küme olan ve okları işlev olan kümeler kategorisidir.