İçeriğe atla

Değişme özelliği

Matematikte değişme özelliği, terimlerin sırasının değişmesiyle sonucun değişmediği ikili işlemlere özgü bir özelliktir. Birçok ikili işlemin temel bir özelliği olmasının yanı sıra, birçok matematiksel ispat da buna dayanır. En sık olarak, "3 + 4 = 4 + 3" ya da "2 × 5 = 5 × 2" gibi ifadelerin açıklanmasında rastlanılsa da, daha ileri düzey durumlarda da kullanılabilir.

Sayıların toplanması ve çarpılması gibi basit işlemlerin değişmeli olduğu fikri yıllarca üstü kapalı olarak kabul edilmiştir. Özelliğin bir terim olarak adlandırılması ise, ancak 19. yüzyılda matematiğin yeniden biçimlendirilmeye başlaması ve çıkarma ve bölme gibi değişmeli olmayan işlemleri değişmeli olanlardan ayırma ihtiyacının ortaya çıkması ile olmuştur.

Matematiksel tanımlar

Bir S kümesindeki ikili işlemi, eğer tüm

x, y ∈ S için x y = y x

ise, değişmeli işlemdir ya da 'ın değişme özelliği vardır.

Yukarıdaki özelliği sağlamayan bir işleme değişmeli olmayan denir.

Örnekler

Değişmeli işlemler

Değişmeli olmayan işlemler

Bazı değişmeli olmayan ikili işlemler şunlardır:[1]

Bölme, çıkarma ve üs alma

Bölme değişmeli değildir: .

Çıkarma değişmeli değildir: .

Bununla birlikte, daha kesin olarak anti-değişmeli olarak sınıflandırılır, çünkü .

Üs alma değişmeli değildir: .

Tarih ve etimoloji

Değişme özelliğinin üstü kapalı olarak kullanımına ilişkin kayıtlar eski zamanlara kadar gider. Mısırlılar, çarpım hesaplarını basitleştirmek için çarpmanın değişme özelliğini kullanmışlardır.[2][3] Euclid'in de Elementler adlı kitabında çarpmanın değişme özelliğini varsaydığı bilinmektedir.[4]

Değişme özelliğinin biçimsel kullanımları, 18. yüzyılın sonları ve 19. yüzyılın başlarında matematikçilerin fonksiyonlar teorisi üzerinde çalışmaya başlamasıyla ortaya çıkmıştır.

Günümüzde ise, matematiğin çoğu dalında kullanılan temel ve iyi bilinen bir özelliktir.

Değişmeli teriminin ilk kayıtlı kullanımına, 1814'te François Servois tarafından yazılan ve günümüzde değişme özelliği olarak adlandırılan özelliğe sahip fonksiyonları tanımlarken commutatives kelimesini kullanan [5][6] bir anı kitabında rastlanmaktadır. Kelime, Fransızcada "yerine geçmek / değiştirmek" anlamına gelen commuter kelimesi ile "eğilimli" anlamına gelen -ative son ekinin birleşiminden oluşur; dolayısıyla da tam anlamıyla "ikame etme veya değiştirme eğiliminde" demektir.

Terim daha sonra 1838'de İngilizcede,[7] Duncan Farquharson Gregory'nin Transactions of the Royal Society of Edinburgh'da 1840'ta yayınlanan "On the real nature of symbolical algebra" (Sembolik cebirin gerçek doğası) başlıklı makalesinde ortaya çıkmıştır.[8]


Kaynakça

  1. ^ Yark
  2. ^ Lumpkin 1997
  3. ^ Gay & Shute 1987
  4. ^ O'Conner & Robertson Real Numbers
  5. ^ Cabillón & Miller
  6. ^ O'Conner & Robertson, Servois
  7. ^ Rice, Adrian; Wilson, Robin, (Ed.) (2011). Mathematics in Victorian Britain. Oxford University Press. s. 4. ISBN 9780191627941.  r eksik |soyadı1= (yardım)
  8. ^ "On the real nature of symbolical algebra". Transactions of the Royal Society of Edinburgh. 14: 208-216. 1840.  Birden fazla yazar-name-list parameters kullanıldı (yardım); Yazar |ad1= eksik |soyadı1= (yardım)

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Tam sayı</span> sıfırın sağında bulunan sayılar büyükken solunda bulunan sayılar küçüktür

Tam sayılar, sayılar kümesinde yer alan sıfır (0), pozitif yönde yer alan doğal sayılar ve bunların negatif değerlerinden oluşan negatif sayılardan oluşan sayı kümesidir.

<span class="mw-page-title-main">Doğal sayılar</span> sayma sayıları kümesine 0ın eklenmesiyle oluşan sayılar kümesi

Doğal sayılar, şeklinde sıralanan tam sayılardır ve kimi tanımlamalara göre 0 sayısı da bu kümeye dâhil edilebilir. Aralarında standart ISO 80000-2'nin de bulunduğu bazı tanımlar doğal sayıları 0 ile başlatır ve bu durum negatif olmayan tam sayılar için 0, 1, 2, 3, ... şeklinde bir karşılık bulurken, bazı tanımlamalar 1 ile başlamakta ve bu da pozitif tam sayılar için 1, 2, 3, ... şeklinde bir eşlenik oluşturur. Doğal sayıları sıfır olmadan ele alan metinlerde, sıfırın da dahil edildiği doğal sayılar bazen tam sayılar olarak adlandırılırken diğer bazı metinlerde bu terim, negatif tam sayılar da dahil olmak üzere tam sayılar için kullanılmaktadır. Özellikle ilkokul seviyesindeki eğitimde, doğal sayılar, negatif tam sayıları ve sıfırı dışlamak ve saymanın ayrık yapısını, gerçek sayıların bir karakteristiği olan ölçümün sürekliliğiyle karşıtlık oluşturmak amacıyla sayma sayıları olarak adlandırılabilir.

Cebir sayılar teorisini, geometriyi ve analizi içine alan geniş bir matematik dalıdır. Temel matematik işlemlerinden, çember ve daire alanları bulmayı kapsayan geniş bir ilgi alanına sahiptir. Cebir, mühendislik ve eczacılık gibi birçok alanda kullanılmaktadır. Kuramsal cebir, ileri matematiğin bir dalı olmakla birlikte sadece uzmanlar tarafından çalışılan bir koldur.

<span class="mw-page-title-main">Aritmetik</span> temel matematik dalı

Aritmetik; matematiğin sayılar arasındaki ilişkiler ile sayıların problem çözmede kullanımı ile ilgilenen dalı. Aritmetik kavramı ile genellikle sayılar teorisi, ölçme ve hesaplama kastedilir. Bununla birlikte bazı matematikçiler daha karmaşık çeşitli işlemleri de aritmetik başlığı altında değerlendirirler.

<span class="mw-page-title-main">Soyut cebir</span> Matematiğin bir alanı

Soyut cebir veya soyut matematik, matematiğin bir alanı olup, cebirsel yapılar üzerinde çalışır. Cebirsel yapılar, elemanları üzerinde belirli işlemlerin uygulandığı kümelerdir ve gruplar, halkalar, alanlar, modüller, vektör uzayları, kafesler ve alan üzerindeki cebirler içerir. Soyut cebir terimi, 20. yüzyılın başlarında temel cebirden ayırmak amacıyla türetilmiştir. Soyut cebir ileri matematik için temel hale geldikçe basitçe "cebir" olarak adlandırılırken, "soyut cebir" terimi pedagoji dışında nadiren kullanılır.

<span class="mw-page-title-main">Halka</span>

Halka, matematikte cebirin temel yapılarından biridir ve soyut cebirde tam sayıların soyutlamasıdır. Bu yapıyı işleyen dala halka kuramı denir. Halkalar diğer bir temel yapı olan grupların üzerine inşa edilir. Her halka, aynı zamanda değişmeli bir gruptur, ama bir halkadan daha fazla özelliği sağlaması istenir. Örneğin halkada grup işlemine ek olarak ikinci bir işlem daha vardır. Halkalara örnek olarak tam sayılar, modülo n sayılar, polinomlar ya da karmaşık sayılar verilebilir.

<span class="mw-page-title-main">Çarpma</span>

Çarpma, temel aritmetik işlemlerden biridir. Sayılarda çarpma, çarpılan sayının çarpan sayı kadar adedinin toplamının alınması işlemidir.

Eğer bir kümeyse, kümesinden kümesine giden bir fonksiyona kümesi üzerine ikili işlem denir. İkili işlemi olarak gösterirsek, yerine genellikle , , ya da daha yaygın olarak yazmak bir gelenek halini almıştır. Burada önemli olan, her için, işlemin sonucu olan elemanının yine kümesinde olmasıdır, yoksa ikili bir işlemden söz edemeyiz. Örneğin, ise, işlemi bu küme üzerinde ikili bir işlem değildir. Örneğin, bir doğal sayı değildir. Öte yandan olarak tanımlanan işlem doğal sayılar kümesi üzerine ikili bir işlemdir.

<span class="mw-page-title-main">Hiperbolik sayılar</span>

Gerçel sayılarda olmayan ve karesi 1 olan bir sayının kümeye katılmasıyla üretilen kümeye hiperbolik sayılar kümesi denir. Tıpkı karmaşık sayılarda olduğu gibi, hiperbolik sayılar şeklinde yazılabilen sayılardır, ancak karmaşık sayılardan tek farkı hiperbolik birim denilen sayının

<span class="mw-page-title-main">Bölme</span> Matematik işlemi

Bölme, aritmetiğin temelini oluşturan dört ana işlemden biri olarak kabul edilir. Diğer üç ana işlem ise toplama, çıkarma ve çarpma olarak sıralanır. İşlem sırasında bölünen miktar bölünen olarak adlandırılırken, bu miktarın bölündüğü sayıya bölen denir ve işlemin sonucunda elde edilen değer bölüm olarak tanımlanır.

Cisim, halka ve grup gibi soyut bir cebirsel yapıdır. Kabaca, elemanları arasında toplama, çıkarma, çarpma ve bölme yapılabilen ve bu işlemlerde sayılardan alışık olduğumuz temel aritmetik kurallarının geçerli olduğu bir küme olarak tanımlanabilir.

<span class="mw-page-title-main">Toplama</span> aritmetik işlem

Toplama işlemi dört ana aritmetik işlemden biridir. Diğer aritmetik işlemler çıkarma, çarpma ve bölmedir. İki doğal sayının toplaması sayı değerlerinin toplamını üretir. Yandaki resimdeki örnek, toplamda beş elma oluşturan üç elma ve iki elmanın toplamasını göstermektedir. Bu gözlem, matematik ifadesi ile "3 + 2 = 5" olarak ifade edilir

<span class="mw-page-title-main">İşlem</span> işlenenlerden bir sonuç üreten matematiksel prosedür; sıfır veya daha fazla giriş değerinden (işlenenler olarak adlandırılır) bir çıkış değerine kadar hesaplama

İşlem, bir işi sonuçlandırmak için gerçekleştirilen çalışmalar bütünü; muamele. Örnek: "Gerekli işlem gerçekleştirildikten sonra paranızı çekebilirsiniz".

Cebirsel geometri, matematiğin bir dalıdır. Adından anlaşılabileceği gibi, soyut cebirin, özellikle değişmeli cebirin yöntemleri ile geometrinin dili ve problemlerini bir araya getirir. Çağdaş matematik içerisinde merkezi bir rol üstlenmesinin yanında, karmaşık analiz, topoloji, sayılar kuramı gibi matematiğin diğer dallarıyla yakın ilişkisi vardır.

Hiperişlem, matematik'te aritmetik işlemlerin sonsuz dizisidir. Ardılın birli işlemi, ardından toplama, çarpma ve üs almanın iki işlemiyle devam eden ve ardından ikili işlemlerin ötesine geçerek serilerle ilerleyen bir işlemdir. Üstelden sonraki işlemler için bu dizinin n. elemanı Reuben Goodstein tarafından adlandırıldı. n Yunan önekinden sonra -syon son eki kullanılarak elde edilir ve Knuth yukarı ok gösterimindeki n-2 okları kullanılarak yazılabilir. Her hiperişlem, önceki terimlerin yinelemesi olarak tanımlanır. Ackermann işlevi, Knuth yukarı ok gösterimini kullanarak şöyle yinelenebilir:

<span class="mw-page-title-main">Temel cebir</span>

Basit cebir, matematik dersinde öğretilen cebirin en temel kısmıdır. Normalde liselerde öğretilir ve öğrencilerin işlem ve belirli sayılar üzerine kurulu olan aritmetiği anlamalarını sağlar. Cebir, değişken olarak bilinen sabit olmayan değerlerin büyüklüklerini açıklar. Soyut cebir aksine temel cebir, cebirsel yapı ile ilgilenmez, reel sayı ve karmaşık sayılarla ilgilenir.

Matematikte cebirsel ifade, sabitler ve değişkenlerden oluşan bir ifadedir ve toplama, çıkarma, çarpma, bölme ve bir rasyonel sayının üssünü alma gibi sonlu sayıda cebirsel işlemlerden oluşur. Örneğin, ifadesi bir cebirsel ifadedir. Karekök alma kuvveti oranında yükseltir. Cebirsel ifadeye başka bir örnek aşağıdaki kareköklü ifade verilebilir:

<span class="mw-page-title-main">Temel aritmetik</span>

Temel aritmetik, aritmetiğin en basit kısmıdır ve toplama, çıkarma, çarpma, bölme gibi işlemlerden oluşur.

Soyut cebir ve mantıkta, ikili işlemlerin dağılma özelliği, temel cebirdeki dağılma kuralının genelleştirilmesidir.

<span class="mw-page-title-main">Birleşme özelliği (ikili işlemler)</span>

Matematikte birleşmeli özellik, bir küme üzerine tanımlanmış ikili işlemlerin ayırt edici özelliklerinden biridir. Bu özelliği sağlayan ikili işlemlere birleşmeli işlem denir. Açık olarak bu özellik, (xy)z = x(yz) demektedir, yani üç elemanı "çarparken" işlem sırasının önemli olmadığını söylemektedir, bir başka deyişle birleşmeli özellikte işlem yaparken paranteze gerek olmadığını söylemektedir. Örneğin tam sayılar kümesi Z üzerine tanımlanmış olan toplama işlemi birleşmeli bir işlemdir ancak çıkarma işlemi birleşmeli değildir, çünkü eşitliği her için sağlanmasına karşın, eşitliği için sağlanmaz.